一种基于鲁棒水印的个性化联邦学习模型所有权保护方法

    公开(公告)号:CN118674062A

    公开(公告)日:2024-09-20

    申请号:CN202410669652.8

    申请日:2024-05-28

    Applicant: 湖南大学

    Abstract: 本发明公开了一种基于鲁棒水印的个性化联邦学习模型所有权保护方法,本发明方法包括水印初始化步骤:S1.服务器将初始化模型和每个客户端的公共水印信息发送给对应客户端,客户端生成自己的私有水印;水印解耦嵌入步骤:S2.客户端通过训练将私有水印嵌入到个性化层,将公共水印信息嵌入到对应的表示层位置。然后上传表示层参数到服务器;恶意客户端检测步骤:S3.服务器对客户端上传的表示层参数进行检测,将诚实客户端的参数聚合作为下一轮表示层参数,同时标记恶意客户端。进一步地,服务器循环抽取客户端进行多轮训练,直到模型符合标准。本发明具有客户端容量大,水印鲁棒性强等优点。

Patent Agency Ranking