-
公开(公告)号:CN115473630B
公开(公告)日:2024-08-16
申请号:CN202210962130.8
申请日:2022-08-11
Applicant: 湖北工业大学
Abstract: 本发明提供一种基于量子计算的物联网隐私查询方法,设置隐私查询系统模型,所述隐私查询系统模型中,存在四个实体,分别为客户端、数据提供商、边缘设备和终端物联网设备;在数据提供商拥有满足客户端希望查询的数据后,当拥有索引地址信息的用户要通过数据提供商查询一个数据项,数据提供商在了解到有一个客户端需要查询数据后,将数据集进行加密并且量子化后,发送给客户端;客户端在接收到加密的数据集后,进行解密获得目标数据;在此过程中,不会泄露客户端隐私信息‑索引地址,同样也不会泄露查询数据项之外的服务器隐私数据。本发明在数据传输过程中仅需要一轮的数据传输,同时通信代价仅需要线性通信复杂度;在通信过程中具有高安全性。
-
公开(公告)号:CN115035550B
公开(公告)日:2024-08-13
申请号:CN202210678342.3
申请日:2022-06-13
Applicant: 湖北工业大学
IPC: G06V40/10 , G06V10/82 , G06V10/40 , G06N3/0464 , G06N3/08
Abstract: 本发明针对中心和尺度预测的(Central and Scale Prediction,CSP)行人检测模型在复杂场景下出现漏检或者误检的问题,提出了一种基于改进的CSP网络的行人检测方法,首先将原主干网络Resnet50替换为Resnet101,使得网络能够更好的提取被其它物体遮挡的特征。其次引入了基于通道和压缩注意力机制的方法,以获得更高的训练速度和检测速度。最后利用非极大值抑制算法形成最优先验候选框数量以及难样本的再训练。经实验表明该算法在cityperson数据集上,严重遮挡和部分遮挡的指标比当前的行人检测算法的性能有所提高,在公共数据集上取得了较好的鲁棒性。
-
公开(公告)号:CN114722202B
公开(公告)日:2024-07-26
申请号:CN202210369747.9
申请日:2022-04-08
Applicant: 湖北工业大学
IPC: G06F16/35 , G06N3/0442 , G06N3/049 , G06N3/084
Abstract: 本发明公开了一种基于双向双层注意力LSTM网络的多模态情感分类方法及系统,首先多模态数据特征的选取;然后对于音频数据选择双层的单向LSTM模型,用于抽取音频特征,对于文本和视频信息,选用TBA‑LSTM(Two‑layerBILSTM based on Attention)模型进行特征抽取;接着将抽取后的特征进行张量融合的方式;最后使用注意力机制来进行多模态数据的分类问题。本发现相对于一些其他的传统模型(LSTM,TFN,MFN,MARN等等),在公共数据集上CMU‑MOSI上,其精度和F1_Score均有显著程度的提升,并且其深层次的特征抽取能力更强。
-
公开(公告)号:CN111915526B
公开(公告)日:2024-05-31
申请号:CN202010778450.9
申请日:2020-08-05
Applicant: 湖北工业大学 , 武汉烽火技术服务有限公司 , 烽火通信科技股份有限公司
IPC: G06T5/90 , G06T5/60 , G06N3/045 , G06N3/0475 , G06N3/094
Abstract: 本发明属于图像处理技术领域,公开了一种基于亮度注意力机制低照度图像增强算法的摄影方法,将低照度图像增强算法嵌入摄像设备中,在摄像机的程序中编入低照度图像增强模式,利用摄像设备的低照度图像增强模式进行摄影,直接应用基于亮度注意力生成对抗网络的低照度图像增强网络增强图像结果;或者,利用摄像设备摄影进行低照度图像获取,利用基于亮度注意力生成对抗网络的低照度图像增强网络对获取的图像进行增强,得到增强后的摄影图像。本发明引入亮度注意力机制,提升了增强图像的图片感知质量,提高了增强效率,进而引入科学摄影领域,形成能够解决科学摄影中问题的应用。
-
公开(公告)号:CN113568954B
公开(公告)日:2024-03-19
申请号:CN202110882923.4
申请日:2021-08-02
Applicant: 湖北工业大学 , 武汉烽火技术服务有限公司
IPC: G06F16/2458 , G06F16/26 , G06F16/215
Abstract: 本发明属于数据处理技术领域,公开了一种网络流量预测数据预处理阶段的参数最优化方法及系统,网络流量预测数据预处理阶段的参数最优化方法包括:对数据集进行改进策略上的Q‑Learning强化学习预处理;进行基于流程压缩的快速估值网络模型的构建;进行基于混合精度的模型训练;进行基于改进Q‑Learning的最优化参数搜索。本发明提出了基于流程压缩的快速估值网络模型,基于流量预测模型出发,通过省略原模型中的预处理步骤并降低预测模型的训练代数的策略,构建能够用于快速估算回报值的网络模型;提出基于混合精度的模型训练流程,通过压缩数据尾款加快算法的计算性能,大幅度的提高了搜索最优化非空值率参数的速度。
-
公开(公告)号:CN112908416B
公开(公告)日:2024-02-02
申请号:CN202110393715.8
申请日:2021-04-13
Applicant: 湖北工业大学
IPC: G16B20/30 , G06F18/241 , G06N3/126 , G06N3/086
Abstract: 本发明提供了一种生物医学数据特征选择方法,包括:提取生物医学数据集中的特征构成原始特征集合;根据所述原始特征集合,对种群进行初始化得到初始种群,并设置生物医学数据特征选择所需的参数;将初始种群中的个体映射为相应的特征组合,通过适应度函数计算种群中个体的适应度值;利用轮盘赌选择对所述初始种群进行三系种群的划分,分别随机从不育系和保持系中选择个体作为父本和母本进行杂交操作;随机选择恢复系中的个体进行自交操作;当达到最大自交次数时,对恢复系个体进行重置操作,在搜索空间中随机选择一组基因序列替换原始个体,并将自交次数归0;判断是否满足终止条件,输出全局最优的个体。(56)对比文件杨娟“.基于杂交水稻算法的分类器权重优化研究”《.中国优秀硕士学位论文全文数据库》.2019,(第第9期期),全文.
-
公开(公告)号:CN111950615B
公开(公告)日:2023-12-05
申请号:CN202010763097.7
申请日:2020-07-31
Applicant: 武汉烽火技术服务有限公司 , 湖北工业大学 , 烽火通信科技股份有限公司
IPC: G06F18/2111 , G06N3/006
Abstract: 本发明公开了一种基于树种优化算法的网络故障特征选择方法,涉及智能计算技术领域,本发明采用改进Sigmod函数对树种优化算法进行二进制转换,并利用改进的二进制树种优化算法对网络故障原始的数据集进行特征选择,剔除不相关或冗余的对等网络故障特征,取出真正相关的特征,节省网络故障识别中特征提取的计算时间,从而提高网络故障识别的效率和精度;无需人为指定要选择的特征维数,能够智能的在识别精度和特征维数之间取得很好的平衡,快速自动寻找到比较合适最优特征子集。
-
公开(公告)号:CN111611427B
公开(公告)日:2023-06-30
申请号:CN202010433167.2
申请日:2020-05-21
Applicant: 湖北工业大学
IPC: G06F16/583 , G06N3/0464 , G06N3/09
Abstract: 本发明属于图像检索技术领域,公开了一种基于线性鉴别分析深度哈希算法的图像检索方法及系统,利用CNN提取图像特征;构造基于线性判别分析LDA的目标函数,将图像特征映射到哈希标签中;利用生成的hash标签训练一个简单的图像哈希深度学习网络,利用深度哈希模型将新的图像的特征映射到哈希码完成图像检索。对于目前的图像检索技术来说,图像数据庞大,并且标签在大数据时代是难以获取的,在大量图像中进行图像检索,这是非常耗时和不可扩展的,所以根据现有的问题,本发明提出的技术方法一方面避免了依赖类标签来监督散列的过程,另一方面也避免了由于深度网络获取图像特征而导致的大量的时间消耗。
-
公开(公告)号:CN116311880A
公开(公告)日:2023-06-23
申请号:CN202211464985.4
申请日:2022-11-22
Applicant: 湖北工业大学
IPC: G08G1/01 , G06Q10/04 , G06Q50/26 , G06F18/214 , G06F18/27 , G06F18/2411 , G06F18/25 , G06N3/042 , G06N3/0442 , G06N3/045 , G06N3/0464
Abstract: 本发明提供了一种基于局部‑全局时空特征融合的交通流量预测方法及设备,所述方法包括:步骤一至步骤五。本发明在兼顾时序信息顺序相关的同时获取了交通速度预测的全局时间信息,通过融合时间和空间局部与非局部信息提升模型的学习能力,模型具有更高的预测精度。
-
公开(公告)号:CN111046562B
公开(公告)日:2023-06-16
申请号:CN201911294075.4
申请日:2019-12-16
Applicant: 湖北工业大学
Abstract: 本发明属于智能计算与运筹学交叉应用技术领域,公开了一种基于蜂群算法的多目标引导人员疏散仿真方法及系统,通过对人工蜂群算法和粒子群算法进行优化结合解决多目标引导疏散问题,利用视觉引领蜂,减少跟随蜂对引领蜂的盲目选择,再结合粒子群的基本思想,优化跟随蜂的疏散目标,并采用元胞自动机模型构建疏散场景,从而达到简化个体疏散路径。通过在单个教室的疏散场景下的人群疏散仿真的结果可知,本发明在疏散总时间上比基于基本人工蜂群算法的疏散模型更快,在疏散时间上提高了35.5%。为多障碍物情况下的疏散建模提供思路,为减少疏散时间、减少灾害损失及制定疏散策略提供有益的指导依据。
-
-
-
-
-
-
-
-
-