一种改进Faster R-CNN的太阳能电池片表面缺陷检测方法

    公开(公告)号:CN114627062A

    公开(公告)日:2022-06-14

    申请号:CN202210185506.9

    申请日:2022-02-28

    Abstract: 本发明提出了一种改进Faster R‑CNN的太阳能电池片表面缺陷检测方法。本发明通过工业相机对含有缺陷的太阳能电池片进行图像采集,并通过图像预处理得到每幅预处理后太阳能电池片图像,手动标记上述图像的多个缺陷位置框和缺陷类别;构建改进Faster R‑CNN的太阳能电池片表面缺陷检测模型,将上述图像输入至该模型进行预测,得到每幅图像预测的多个缺陷位置框和缺陷类别,结合该缺陷位置框和缺陷类别构建损失函数模型,通过反向传播算法进行优化训练,得到优化后的网络模型;工业相机实时采集太阳能电池片图像,将该图像通过优化后改进Faster R‑CNN的太阳能电池片表面缺陷检测网络模型进行预测,实现对太阳能电池片的表面缺陷检测。本发明有检测速度快,检测精度高的优点。

    一种利用改进验证码收集带标签的数据集的方法

    公开(公告)号:CN111935106B

    公开(公告)日:2022-05-13

    申请号:CN202010716558.5

    申请日:2020-07-23

    Abstract: 本发明公开了一种利用改进验证码收集带标签的数据集的方法,首先收集并标注大量的现有开源数据集未收录的对象或者是一些物体的不常见多样化的特征,并对这些图像进行位移、旋转、亮度和缩放的图像增强处理以及合并出一个多特征的数据集,其次提出一种基于上述数据集中利用矩形标注这些对象或者特征标签的新型验证码的方法,该方法判定用户输入的标签是否在可接受范围内,若正确,则保存图像和用户输入的标签作为数据集的一部分,反之验证失败,则重新测试直到成功。本发明收集的数据集的效率极高,成本低,且得到的数据集质量高。

Patent Agency Ranking