多智能体代理的数据库内的机器学习特征生成方法

    公开(公告)号:CN119151016A

    公开(公告)日:2024-12-17

    申请号:CN202411650247.8

    申请日:2024-11-19

    Abstract: 本申请涉及一种多智能体代理的数据库内的机器学习特征生成方法,包括:根据历史特征集合在数据库内的机器学习模型中的性能指标,确定第一特征集合和第一特征集合的特征描述;根据机器学习任务和历史特征集合,得到第一特征集合对应的特征提示;获取数据库内的大语言模型根据第一特征集合、特征描述和特征提示生成的新特征,并结合第一特征集合和新特征得到第二特征集合;根据历史特征集合和第二特征集合在机器学习模型中的性能指标,确定第三特征集合;分解第三特征集合,直至分解得到的特征集合与第三特征集合匹配,根据分解结果得到执行机器学习任务所需的第四特征集合。采用本方法能够解决数据库内执行机器学习任务困难且准确性低的问题。

    面向代理模型的推理查询重优化方法、装置、设备和介质

    公开(公告)号:CN119149588A

    公开(公告)日:2024-12-17

    申请号:CN202411639951.3

    申请日:2024-11-18

    Abstract: 本申请涉及一种面向代理模型的推理查询重优化方法、装置、设备和介质,通过基于第一查询计划,将当前批次数据输入至推理模型进行处理,得到所需查询的数据;其中,推理模型包括代理模型和机器学习模型;在执行第一查询计划的过程中,监测统计信息;其中,统计信息包括系统资源或者查询计划选择率;在监测到统计信息的变化超出阈值的情况下,基于第二查询计划,将历史数据输入至代理模型进行重训练;其中,历史数据包括在当前批次数据之前输入至推理模型处理后携带上标签的数据;减小了重优化推理查询方法产生的计算开销,提升了重优化效率。

    一种自适应调整权重的数据库页面替换方法

    公开(公告)号:CN118939670A

    公开(公告)日:2024-11-12

    申请号:CN202411005185.5

    申请日:2024-07-25

    Applicant: 浙江大学

    Abstract: 本发明公开了一种自适应调整权重的数据库页面替换方法,本方法使用页面值来表示页面的冷热程度,在替换的过程中根据命中率的变化来选择不同的权重,并在读取时将该权重添加到页面值中,在缓冲区没有空闲页槽时,通过循环遍历所有页槽来找到符合条件的页槽并将该页槽下的页面替换成要读取的页面,从而实现页面替换过程。本发明使用页面值来表示页面的冷热程度,减少了内存空间的消耗;不需要数据结构并发锁,提升了数据库的并发能力,增加了数据库的吞吐量;使用自适应变化的权重来使权重符合当前的负载,从而提高缓冲区的命中率,提高数据库的吞吐量。

    一种大模型处理表格数据的方法、装置及介质

    公开(公告)号:CN118245485B

    公开(公告)日:2024-08-23

    申请号:CN202410645067.4

    申请日:2024-05-23

    Applicant: 浙江大学

    Abstract: 本发明公开了一种大模型处理表格数据的方法、装置及介质,包括:将用户的自然语言转化为SQL查询,以进行表格数据查询请求;将SQL查询中的表格任务解析成对应的算子,以生成粗粒度的计算图;使用算子分解、算子组合、算子重排,并结合代价函数对粗粒度的计算图进行优化,生成细粒度的计算图;根据细粒度的计算图编译成代码;执行所述代码,得到用户答复。本发明能够实现与表格的自然语言交互,能够实现提取信息、计算、推理等功能,具备更强的理解和执行表格任务的能力。

    一种大模型处理表格数据的方法、装置及介质

    公开(公告)号:CN118245485A

    公开(公告)日:2024-06-25

    申请号:CN202410645067.4

    申请日:2024-05-23

    Applicant: 浙江大学

    Abstract: 本发明公开了一种大模型处理表格数据的方法、装置及介质,包括:将用户的自然语言转化为SQL查询,以进行表格数据查询请求;将SQL查询中的表格任务解析成对应的算子,以生成粗粒度的计算图;使用算子分解、算子组合、算子重排,并结合代价函数对粗粒度的计算图进行优化,生成细粒度的计算图;根据细粒度的计算图编译成代码;执行所述代码,得到用户答复。本发明能够实现与表格的自然语言交互,能够实现提取信息、计算、推理等功能,具备更强的理解和执行表格任务的能力。

    异构系统的模型并行训练方法、装置和计算机设备

    公开(公告)号:CN119536983A

    公开(公告)日:2025-02-28

    申请号:CN202411345113.5

    申请日:2024-09-25

    Abstract: 本申请涉及一种异构系统的模型并行训练方法、装置和计算机设备,其中,该方法包括:在每个预设条件下,构建待训练模型与各计算设备之间的多种映射关系,并生成策略集合;预设条件包括训练数据的批次大小、待训练模型对应的流水线并行粒度和每个计算设备的预设显存预算;遍历各预设条件,通过动态规划算法对不同的映射关系和策略集合中的各候选策略进行处理,得到当前最优的模型并行训练策略下异构系统的执行成本;基于最小执行成本对应的模型并行训练策略,通过各计算设备执行模型训练。通过本申请,解决了采用固定处理器进行训练,无法利用异构系统中多个计算设备实现高效的并行训练的问题,实现高效的模型并行训练,提升计算设备的资源利用率。

    一种基于量子电路的关系表存储方法

    公开(公告)号:CN118861036A

    公开(公告)日:2024-10-29

    申请号:CN202410972203.0

    申请日:2024-07-19

    Applicant: 浙江大学

    Abstract: 本发明公开了一种基于量子电路的关系表存储方法。本发明利用量子比特和量子门,可以使用少量量子比特,存储大量数据。本发明首先使用一种控制哈达玛门,生成从0开始逐一递增的整数作为主键,再利用主键作为控制位,使用多控制位托佛利门,保存每行的数据。本发明使用量子硬件,实现了关系表的存储,可利用少量量子比特保存大量数据,有利于大数据处理的加速。

Patent Agency Ranking