数据集蒸馏方法、计算机设备及存储介质

    公开(公告)号:CN119357733A

    公开(公告)日:2025-01-24

    申请号:CN202411294683.6

    申请日:2024-09-14

    Abstract: 本申请涉及一种数据集蒸馏方法、计算机设备及存储介质。所述方法包括:获取原始数据集,所述原始数据集包括原始数据以及原始数据标签;基于合成数据标签确定合成数据集中的合成数据,所述合成数据标签基于所述原始数据标签以及预设标签格式确定,所述合成数据集与目标网络模型匹配;基于所述合成数据以及第一预设规则,更新所述目标网络模型的模型参数,并确定所述合成数据的更新梯度;基于所述原始数据、所述更新梯度、更新后的目标网络模型以及第二预设规则更新所述合成数据集。本申请提高了蒸馏后合成数据集的有效性。

    多视图特征选择方法、模型训练方法、设备及程序产品

    公开(公告)号:CN119939201A

    公开(公告)日:2025-05-06

    申请号:CN202411853509.0

    申请日:2024-12-16

    Abstract: 本申请公开一种多视图特征选择方法、模型训练方法、设备及程序产品,方法包括:获取第一多视图数据集;第一多视图数据集包括多个第一视图,任一第一视图中包括一个或多个第一特征子集,第一特征子集中包括原始数据集中原始数据对应的第一特征值;确定每个第一特征子集中第一特征值的分布差异;根据第一特征子集中第一特征值的分布差异,确定第一特征子集的权重;根据第一特征子集的权重,从多个第一特征子集中确定最优第一特征子集。本发明通过关注不同类别原始数据的第一特征值的分布差异层面,而不是去关注不同类别原始数据的数量差异层面,实现对所有类别的原始数据进行平等对待,以减轻类别不平衡问题的影响,从而特征选择的效果也更好。

    多智能体代理的数据库内的机器学习特征生成方法

    公开(公告)号:CN119151016B

    公开(公告)日:2025-05-13

    申请号:CN202411650247.8

    申请日:2024-11-19

    Abstract: 本申请涉及一种多智能体代理的数据库内的机器学习特征生成方法,包括:根据历史特征集合在数据库内的机器学习模型中的性能指标,确定第一特征集合和第一特征集合的特征描述;根据机器学习任务和历史特征集合,得到第一特征集合对应的特征提示;获取数据库内的大语言模型根据第一特征集合、特征描述和特征提示生成的新特征,并结合第一特征集合和新特征得到第二特征集合;根据历史特征集合和第二特征集合在机器学习模型中的性能指标,确定第三特征集合;分解第三特征集合,直至分解得到的特征集合与第三特征集合匹配,根据分解结果得到执行机器学习任务所需的第四特征集合。采用本方法能够解决数据库内执行机器学习任务困难且准确性低的问题。

    基于混合量子算法的路径优化方法、装置、计算机设备和存储介质

    公开(公告)号:CN119398289A

    公开(公告)日:2025-02-07

    申请号:CN202411268070.5

    申请日:2024-09-10

    Abstract: 本申请涉及一种基于混合量子算法的路径优化方法、装置、计算机设备和存储介质,其中,该方法包括:获取待优化路径的无向完全加权图的权重邻接矩阵;将权重邻接矩阵输入到预设的量子电路中进行优化,得到第一候选解和对应的第一权重;其中,在量子电路的编码与剪枝的优化过程中,将所有候选解划分为多个步骤;将旅行商在每个步骤中的选择,编码到量子电路中,执行相应的剪枝,以形成包含所有候选解的均匀叠加态;根据第一权重和预设的第一阈值,更新第一候选解,得到目标路径。通过本申请,解决了相关技术中路径规划的效率低下的问题,有效减少编码候选解所需的量子资源,实现在精确规划路径的同时,能够提高路径规划效率。

    图像标签标注方法、装置、计算机设备及存储介质

    公开(公告)号:CN119360077A

    公开(公告)日:2025-01-24

    申请号:CN202411297222.4

    申请日:2024-09-14

    Abstract: 本申请涉及一种图像标签标注方法、装置、计算机设备及存储介质。所述方法包括:获取图像信息,图像信息包括图像数据、文本数据以及图像标签,图像标签包括第一类别标记信息;基于图像编码模型确定图像数据的视觉特征序列,并基于文本编码模型分别确定文本特征序列、类别特征;基于视觉特征序列以及文本特征序列确定相似度矩阵,并将相似度矩阵对齐至修正矩阵,以更新图像编码模型,修正矩阵基于图像信息确定;基于更新后的图像编码模型,确定更新后的视觉特征序列,基于更新后的视觉特征序列以及类别特征,确定图像标签的第二类别标记信息;基于第二类别标记信息,对第一类别标记信息中的未知类别进行标注。本申请提高了标签标注准确性、鲁棒性。

    数据协同查询方法、装置、计算机设备及存储介质

    公开(公告)号:CN119357234A

    公开(公告)日:2025-01-24

    申请号:CN202411296629.5

    申请日:2024-09-14

    Abstract: 本申请涉及一种数据协同查询方法、装置、计算机设备及存储介质。所述方法包括:获取查询信息,并基于所述查询信息确定查询关系算子与至少一个目标模型算子;在数据库中预设执行规则,并基于所述目标模型算子确定目标模型在数据库中的所述执行规则,所述执行规则基于所述目标模型的模型参数以及模型计算图确定;基于所述查询关系算子以及所述执行规则,从所述数据库中确定查询结果。本申请实施例可以基于查询关系算子以及数据库中的执行规则,自动实现数据查询过程,得到数据查询结果,而不再需要用户手动解析目标模型,以及根据目标模型手动编写大量的SQL。本申请不仅降低了人工成本,还有效缩短了数据查询的时间,进而显著提高了数据查询的效率。

    多智能体代理的数据库内的机器学习特征生成方法

    公开(公告)号:CN119151016A

    公开(公告)日:2024-12-17

    申请号:CN202411650247.8

    申请日:2024-11-19

    Abstract: 本申请涉及一种多智能体代理的数据库内的机器学习特征生成方法,包括:根据历史特征集合在数据库内的机器学习模型中的性能指标,确定第一特征集合和第一特征集合的特征描述;根据机器学习任务和历史特征集合,得到第一特征集合对应的特征提示;获取数据库内的大语言模型根据第一特征集合、特征描述和特征提示生成的新特征,并结合第一特征集合和新特征得到第二特征集合;根据历史特征集合和第二特征集合在机器学习模型中的性能指标,确定第三特征集合;分解第三特征集合,直至分解得到的特征集合与第三特征集合匹配,根据分解结果得到执行机器学习任务所需的第四特征集合。采用本方法能够解决数据库内执行机器学习任务困难且准确性低的问题。

Patent Agency Ranking