一种生产参数优化预测方法、装置、设备及存储介质

    公开(公告)号:CN108647808B

    公开(公告)日:2022-03-29

    申请号:CN201810322649.3

    申请日:2018-04-11

    Applicant: 济南大学

    Abstract: 本发明涉及一种生产参数优化预测方法、装置、设备及存储介质,包括:获取生产流程中各个工序的监测数据;对所述监测数据预处理;利用规则关联算法在任意两个工序间构建表示两个工序间影响关系的最强关联链,并将所述最强关联链与所述监测数据波动状态结合,得到状态关联链;利用柔性神经树算法根据所述状态关联链建立预测模型,得到并输出预测结果。该方法可根据预测结果对关键工序的参数进行优化,通过优化关键工序的参数进而优化燃煤锅炉的生产流程,达到节能减排、提高经济性和生产安全性的效果。

    一种基于大数据分层聚类的棉花生产工艺优化方法

    公开(公告)号:CN109034486A

    公开(公告)日:2018-12-18

    申请号:CN201810884575.2

    申请日:2018-08-06

    Applicant: 济南大学

    CPC classification number: G06Q10/04 G06Q10/063

    Abstract: 本发明提供一种基于大数据分层聚类的棉花生产工艺优化方法,包括如下步骤:对获取的生产监测原始数据进行数据预处理;对经过预处理后的原始数据确定描述参数属性的关键参数;对确定的关键参数进行数值统计得到分布统计属性数值分布分组;根据分布统计中得到的数值分布分组,使样本中各项属性数据分别映射到各属性分组区间中,形成新的数据集;确定优化目标,进行生产工艺参数的优化。结合棉花加工流程工艺分析。可以用于企业对工艺参数的分析调整。从而优化棉花生产、提高棉花质量、维护企业生产安全。

    一种基于大数据分层聚类的棉花生产工艺优化方法

    公开(公告)号:CN109034486B

    公开(公告)日:2022-03-29

    申请号:CN201810884575.2

    申请日:2018-08-06

    Applicant: 济南大学

    Abstract: 本发明提供一种基于大数据分层聚类的棉花生产工艺优化方法,包括如下步骤:对获取的生产监测原始数据进行数据预处理;对经过预处理后的原始数据确定描述参数属性的关键参数;对确定的关键参数进行数值统计得到分布统计属性数值分布分组;根据分布统计中得到的数值分布分组,使样本中各项属性数据分别映射到各属性分组区间中,形成新的数据集;确定优化目标,进行生产工艺参数的优化。结合棉花加工流程工艺分析。可以用于企业对工艺参数的分析调整。从而优化棉花生产、提高棉花质量、维护企业生产安全。

    一种基于密度和扩展网格的数据流聚类方法

    公开(公告)号:CN107273532A

    公开(公告)日:2017-10-20

    申请号:CN201710509733.1

    申请日:2017-06-28

    Applicant: 济南大学

    CPC classification number: G06F17/30539 G06K9/6223

    Abstract: 本发明涉及一种基于密度和扩展网格的数据流聚类方法,利用Spark并行计算平台,对传统的数据流聚类算法进行了分析和改进,提出了基于密度和扩展网格的数据流聚类算法,改进了人工设置聚类参数的缺陷,可以得到任何形状的聚类,算法基本步骤如下:1、采用每个采样点的局部密度和与其他采样点的距离,确定了网格中的聚类中心数,自动确定聚类中心,避免了初始质心选取不当对聚类结果的影响;2、网格聚类以外的数据点,通过扩展网格,扩展了网格内的聚类,确保了聚类的准确性;3、引入相邻密度估计与网格边界实现网格的合并,节省内存消耗;4、采用衰减因子实时更新网格密度,反应空间数据流的演变过程。

    一种生产参数优化预测方法、装置、设备及存储介质

    公开(公告)号:CN108647808A

    公开(公告)日:2018-10-12

    申请号:CN201810322649.3

    申请日:2018-04-11

    Applicant: 济南大学

    Abstract: 本发明涉及一种生产参数优化预测方法、装置、设备及存储介质,包括:获取生产流程中各个工序的监测数据;对所述监测数据预处理;利用规则关联算法在任意两个工序间构建表示两个工序间影响关系的最强关联链,并将所述最强关联链与所述监测数据波动状态结合,得到状态关联链;利用柔性神经树算法根据所述状态关联链建立预测模型,得到并输出预测结果。该方法可根据预测结果对关键工序的参数进行优化,通过优化关键工序的参数进而优化燃煤锅炉的生产流程,达到节能减排、提高经济性和生产安全性的效果。

    一种面向流式数据的并行增量式关联规则挖掘方法

    公开(公告)号:CN107229751A

    公开(公告)日:2017-10-03

    申请号:CN201710507953.0

    申请日:2017-06-28

    Applicant: 济南大学

    Abstract: 本发明涉及一种面向流式数据的并行增量式关联规则挖掘方法,对传统静态的关联规则挖掘方法进行了改进,提出了面向动态数据流的并行增量式关联规则提取方法,其基本步骤如下:1、在原事务数据库中,根据数据对象的时序划分层次,将整个事务数据库随机划分成若干个非重叠区域;2、利用并行计算平台挖掘出局部频繁项集,生成全局候选项集,进而计算得到全局频繁项集;3、对新增数据流进行增量挖掘,使用局部剪枝的方法,减少扫描数据集次数,得到增量式全局规则。

Patent Agency Ranking