-
公开(公告)号:CN118570065A
公开(公告)日:2024-08-30
申请号:CN202411017322.7
申请日:2024-07-29
Applicant: 济南大学 , 山东青鸟工业互联网有限公司
IPC: G06T3/4053 , G06T3/4046 , G06T5/50 , G06N3/045 , G06N3/0464 , G06N3/08
Abstract: 本发明提出了基于双通道残差注意力的汽车零部件图像超分辨率方法,涉及计算机视觉领域,本发明提出的多层次残差注意力网络由N个双通道残差注意力块和一个特征融合层组成,双通道残差注意力块包含两个并行分支,分别提取输入图像的局部特征和全局特征,同时引入残差连接提高图像特征的稳定性,减少梯度消失和梯度爆炸的问题,最后将初始图像特征和所有双通道残差注意力块的输出进行融合,增强特征表达能力,提升训练效果。
-
公开(公告)号:CN118780986A
公开(公告)日:2024-10-15
申请号:CN202411266315.0
申请日:2024-09-11
Applicant: 济南大学 , 山东青鸟工业互联网有限公司
IPC: G06T3/4053 , G06T3/4046 , G06V10/44 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/096
Abstract: 本发明提出了一种基于大核蒸馏网络的汽车零部件图像超分辨率方法,涉及计算机视觉领域,本发明提出的特征精馏块包括两个分支,每个分支可以单独获取重要的局部特征,提高模型对图像局部特征的获取;同时提出的双通道大卷积核分解块包括两个分支,每个分支分别将一个大卷积核分解成通道卷积、空间局部卷积和空间远程卷积三个部分,从而提高模型对图像全局特征的获取,并降低计算成本和参数数量;特征精馏块和双通道大卷积核分解块分别获取图像的局部特征和全局特征,增强特征的表达能力,提升汽车零部件图像超分辨率效果。
-
公开(公告)号:CN118864554A
公开(公告)日:2024-10-29
申请号:CN202411074266.0
申请日:2024-08-07
Applicant: 济南大学
IPC: G06T7/33 , G06T7/00 , G06N3/0464 , G06N3/045 , G06N3/0499 , G06V10/44 , G06V10/52 , G06V10/42 , G06V10/80 , G06V10/82 , G06N3/048
Abstract: 本发明提出了一种基于融合注意力的汽车零部件图像配准方法,涉及图像配准技术领域。本发明提出了汽车零部件图像配准流程,包括汽车零部件图像数据集制作、构建特征融合模块FFM、构建深度卷积前馈网络模块DFFN、构建融合注意力FAT、构建融合注意力模块FATM、构建汽车零部件图像配准模型和获得配准后的汽车零部件图像;同时提出了融合注意力模块FATM,包括多个融合注意力FAT,FATM可以捕获到不同尺度水平的各种短程和长程流动特征,促进不同层间的特征信息交互,从而更为准确的表示变形场,以提升图像配准的精度。
-
公开(公告)号:CN118780986B
公开(公告)日:2025-02-11
申请号:CN202411266315.0
申请日:2024-09-11
Applicant: 济南大学 , 山东青鸟工业互联网有限公司
IPC: G06T3/4053 , G06T3/4046 , G06V10/44 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/096
Abstract: 本发明提出了一种基于大核蒸馏网络的汽车零部件图像超分辨率方法,涉及计算机视觉领域,本发明提出的特征精馏块包括两个分支,每个分支可以单独获取重要的局部特征,提高模型对图像局部特征的获取;同时提出的双通道大卷积核分解块包括两个分支,每个分支分别将一个大卷积核分解成通道卷积、空间局部卷积和空间远程卷积三个部分,从而提高模型对图像全局特征的获取,并降低计算成本和参数数量;特征精馏块和双通道大卷积核分解块分别获取图像的局部特征和全局特征,增强特征的表达能力,提升汽车零部件图像超分辨率效果。
-
公开(公告)号:CN118570065B
公开(公告)日:2024-12-03
申请号:CN202411017322.7
申请日:2024-07-29
Applicant: 济南大学 , 山东青鸟工业互联网有限公司
IPC: G06T3/4053 , G06T3/4046 , G06T5/50 , G06N3/045 , G06N3/0464 , G06N3/08
Abstract: 本发明提出了基于双通道残差注意力的汽车零部件图像超分辨率方法,涉及计算机视觉领域,本发明提出的多层次残差注意力网络由N个双通道残差注意力块和一个特征融合层组成,双通道残差注意力块包含两个并行分支,分别提取输入图像的局部特征和全局特征,同时引入残差连接提高图像特征的稳定性,减少梯度消失和梯度爆炸的问题,最后将初始图像特征和所有双通道残差注意力块的输出进行融合,增强特征表达能力,提升训练效果。
-
-
-
-