一种基于特征分解的短期电负荷组合预测方法

    公开(公告)号:CN112613641A

    公开(公告)日:2021-04-06

    申请号:CN202011416808.X

    申请日:2020-12-07

    Abstract: 本发明为一种基于特征分解的短期电负荷组合预测方法,包括以下内容:获取用户侧智能电表的电负荷数据,并进行预处理;将预处理后电负荷数据通过小波变化分解为高频序列和多个低频序列;对高频序列和多个低频序列采用相关度分析并筛选特征,筛选能够表征影响因子的子序列构成保留序列,并记录保留序列中各子序列所对应的相关度系数;将预处理后电负荷数据减去保留序列生成残差序列,将所有序列归一化处理;对残差序列和保留序列中的高频序列采用LSTM模型进行电负荷预测,对保留序列中的低频序列采用时间卷积模型进行电负荷预测;将各频段预测值按照权值求和,得到预测结果。该方法能深入挖掘影响电负荷变化的特征,提高预测精度。

    一种基于特征分解的短期电负荷组合预测方法

    公开(公告)号:CN112613641B

    公开(公告)日:2022-04-15

    申请号:CN202011416808.X

    申请日:2020-12-07

    Abstract: 本发明为一种基于特征分解的短期电负荷组合预测方法,包括以下内容:获取用户侧智能电表的电负荷数据,并进行预处理;将预处理后电负荷数据通过小波变化分解为高频序列和多个低频序列;对高频序列和多个低频序列采用相关度分析并筛选特征,筛选能够表征影响因子的子序列构成保留序列,并记录保留序列中各子序列所对应的相关度系数;将预处理后电负荷数据减去保留序列生成残差序列,将所有序列归一化处理;对残差序列和保留序列中的高频序列采用LSTM模型进行电负荷预测,对保留序列中的低频序列采用时间卷积模型进行电负荷预测;将各频段预测值按照权值求和,得到预测结果。该方法能深入挖掘影响电负荷变化的特征,提高预测精度。

Patent Agency Ranking