-
公开(公告)号:CN114005020A
公开(公告)日:2022-02-01
申请号:CN202111303025.5
申请日:2021-11-05
Applicant: 河北工业大学
IPC: G06V20/00 , G06V10/22 , G06V10/25 , G06V10/774 , G06V10/764 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于M3‑YOLOv5的指定移动目标检测方法,将YOLOv5的骨干网络替换为原始MobileNetV3算法网络的去除最后的平均池化层和两个逐点卷积层的部分,并添加了上采样模块。将YOLOv5的瓶颈网络中的与输出端最近的3个CBL模块替换为1个PDP_1模块和2个PDP_2模块。本发明将YOLOv5目标检测算法与MobileNetV3检测算法相结合,改进简便,构建出检测速度快、检测精度高的网络模型。本发明在保留检测精度的同时提高了检测速度,更适用于指定移动目标的检测。
-
公开(公告)号:CN114005020B
公开(公告)日:2024-04-26
申请号:CN202111303025.5
申请日:2021-11-05
Applicant: 河北工业大学
IPC: G06V20/00 , G06V10/22 , G06V10/25 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/045 , G06N3/0464 , G06N3/084
Abstract: 本发明公开了一种基于M3‑YOLOv5的指定移动目标检测方法,将YOLOv5的骨干网络替换为原始MobileNetV3算法网络的去除最后的平均池化层和两个逐点卷积层的部分,并添加了上采样模块。将YOLOv5的瓶颈网络中的与输出端最近的3个CBL模块替换为1个PDP_1模块和2个PDP_2模块。本发明将YOLOv5目标检测算法与MobileNetV3检测算法相结合,改进简便,构建出检测速度快、检测精度高的网络模型。本发明在保留检测精度的同时提高了检测速度,更适用于指定移动目标的检测。
-