基于特征筛选和高斯过程回归的锂电池健康状态估计方法

    公开(公告)号:CN113189490B

    公开(公告)日:2022-04-01

    申请号:CN202110536472.9

    申请日:2021-05-17

    Abstract: 本发明公开了一种基于特征筛选和高斯过程回归的锂电池健康状态估计方法,包括步骤:1、采集待测电池历史数据,定义电池SOH。2、采用粒子群‑灰色关联分析PSO‑GRA方法筛选最优特征电压区间,并基于充电曲线提取特征。3、将样本划分为训练集、测试集。4、建立改进的GPR模型。5、基于训练集数据训练GPR模型。6、基于训练好的模型进行SOH估计,输出估计均值和置信区间。本发明实现了高相关性特征的自动提取,改进了传统的高斯过程回归GPR模型,提高了电池SOH估计精度,且能够适应不同锂离子电池数据。

    基于特征筛选和高斯过程回归的锂电池健康状态估计方法

    公开(公告)号:CN113189490A

    公开(公告)日:2021-07-30

    申请号:CN202110536472.9

    申请日:2021-05-17

    Abstract: 本发明公开了一种基于特征筛选和高斯过程回归的锂电池健康状态估计方法,包括步骤:1、采集待测电池历史数据,定义电池SOH。2、采用粒子群‑灰色关联分析PSO‑GRA方法筛选最优特征电压区间,并基于充电曲线提取特征。3、将样本划分为训练集、测试集。4、建立改进的GPR模型。5、基于训练集数据训练GPR模型。6、基于训练好的模型进行SOH估计,输出估计均值和置信区间。本发明实现了高相关性特征的自动提取,改进了传统的高斯过程回归GPR模型,提高了电池SOH估计精度,且能够适应不同锂离子电池数据。

Patent Agency Ranking