一种基于深度学习的病理图像批次效应优化方法及系统

    公开(公告)号:CN120013783A

    公开(公告)日:2025-05-16

    申请号:CN202510091420.3

    申请日:2025-01-21

    Abstract: 本发明公开了一种基于深度学习的病理图像批次效应优化方法及系统,该方法包括:获取病理样本图像并进行图像预处理,得到待处理的多中心病理图像数据;引入批次鉴别器训练模块与批次对抗模块,构建批次效应优化神经网络模型;基于批次效应优化神经网络模型对待处理的多中心病理图像数据进行病理图像批次效应优化处理,得到优化后的多中心病理图像数据。通过使用本发明,能够减弱多中心病理图像数据的批次效应,进而提高模型对多个中心数据的适应性和预测准确性。本发明作为一种基于深度学习的病理图像批次效应优化方法及系统,可广泛应用于图像识别技术领域。

    一种基于深度学习网络DenseNet的AOI缺陷检测方法

    公开(公告)号:CN116542929A

    公开(公告)日:2023-08-04

    申请号:CN202310505574.3

    申请日:2023-05-06

    Abstract: 本发明公开了一种基于深度学习网络DenseNet的AOI缺陷检测方法,包括数据增强、缺陷检测网络和损失函数设计,包括:对工业产品缺陷数据进行扩充;设计缺陷检测网络学习产品数据特征实现缺陷识别;设计损失函数约束检测网络模型。本发明能在生产检测中快速识别出有缺陷的产品,并且识别精度高,甚至能识别出人眼难以观测到的细微缺陷,减少漏检与误检,还可以及时调整检测性能;模型的轻量化还降低了实际部署时的存储资源的开销,减少了计算时间;在样本类别极不平衡的情况下也可以很好地学习到正负样本特征,实现快速准确检测的效果。

Patent Agency Ranking