一种基于树轨迹模型的多衍生多扩展目标联合跟踪方法

    公开(公告)号:CN117235452A

    公开(公告)日:2023-12-15

    申请号:CN202311163481.3

    申请日:2023-09-11

    Abstract: 本发明涉及扩展目标跟踪技术领域,具体涉及一种基于树轨迹模型的多衍生多扩展目标联合跟踪方法,通过将原始目标及其衍生目标的所有状态序列及其系谱建模为树轨迹变量,作为随机有限集泊松多伯努利混合滤波框架的输入项,并建立扩展目标树轨迹泊松多伯努利混合滤波模型;其次,将树轨迹全局数据关联假设转化为全局分支假设,在全局分支假设下推导出扩展目标树轨迹泊松多伯努利混合次优滤波后验分布,并进行参数化转换;然后对参数化的次优滤波后验分布进行预测,并在预测后通过KL散度提取出衍生目标的轨迹信息,最后对预测所得轨迹进行量测更新。本发明改善了杂波环境下基于随机矩阵建模的多衍生多扩展目标联合跟踪问题。

Patent Agency Ranking