-
公开(公告)号:CN120011368A
公开(公告)日:2025-05-16
申请号:CN202510140396.8
申请日:2025-02-08
Applicant: 杭州电子科技大学丽水研究院 , 上上德盛集团股份有限公司 , 浙江阿季云智能科技有限公司
Abstract: 本发明涉及知识图谱技术领域,公开了一种基于知识图谱的语义关联和逻辑规则的推理方法,该方法包括:获取跨职能部门的第一数据集,构建跨部门知识图谱;从跨部门知识图谱中提取指标节点,识别语义冲突指标,生成指标语义冲突列表,基于指标语义冲突列表,构建语义映射后的跨部门知识图谱;获取跨职能部门的第二数据集,基于第二数据集和语义映射后的跨部门知识图谱,得到融合后的跨部门知识图谱和语义关联度矩阵;依据语义关联度矩阵,动态调整融合后的跨部门知识图谱的各节点和边的权重,生成跨部门协同知识图谱;基于跨部门协同知识图谱生成跨部门协同决策建议;本发明显著提升了跨部门协同决策的效率和质量。
-
公开(公告)号:CN119723157A
公开(公告)日:2025-03-28
申请号:CN202411699542.2
申请日:2024-11-26
Applicant: 杭州电子科技大学
IPC: G06V10/764 , G06V10/774 , G06V10/74 , G06V10/82 , G06N3/084 , G06N3/096
Abstract: 本发明公开了一种基于联邦增量学习的智能工厂精益制造故障检测方法,包括以下步骤:S10,本地参与方的本地编码器模型使用对比学习方式进行预训练;S20,对全局编码器模型训练权重和本地参与方的本地编码器模型训练权重进行知识蒸馏,得到本地完整模型,进行本地训练;S30,将经过本地训练后的本地完整模型拆分为本地参与方的本地编码器模型和本地参与方的本地解码器模型,完成聚合训练得到本轮全局编码器训练权重;S40,将全局编码器训练权重下载到本地参与方的本地编码器模型,并与本地参与方的本地解码器模型结合形成本地完整模型;S50,使用本地完整模型对精益制造任务进行故障检测,判断是否发生故障。
-