-
公开(公告)号:CN116958175B
公开(公告)日:2023-12-26
申请号:CN202311218213.7
申请日:2023-09-21
Applicant: 无锡学院
IPC: G06T7/11 , G06N3/0464 , G06N3/048 , G06N3/08 , G06V10/26 , G06V10/764 , G06V10/82
Abstract: 一种血液细胞分割网络的构建方法及血液细胞分割方法。属于图像识别技术领域,具体涉及血液细胞图像的识别技术领域。其解决了以往深度学习的方式中,对于血液细胞显微图像中白细胞,白细胞核及红细胞三类同时分割研究较少的问题。所述血液细胞分割网络包括卷积层、空洞残差层、池化层和上采样层,血液细胞图像输入后,依次经过卷积层、空洞残差层、池化层和上采样层后输出,所述空洞残差层与上采样层跳跃连接。本发明所述网络及方法可以应用在血液细胞研究技术领域以及血液细胞分割技术领域。
-
公开(公告)号:CN114037636B
公开(公告)日:2024-12-17
申请号:CN202111430920.3
申请日:2021-11-29
Applicant: 无锡学院
Abstract: 本发明公开了一种自适应光学系统校正图像的多帧盲复原方法,具体为:步骤1:采用梯度滤波器对第f帧退化图像g进行高频信息提取,得到提取后的高频信息;基于提取到的高频信息建立目标函数,用于估计与f帧退化图像对应的点扩散函数;基于交替迭代算法将目标函数分割成第一、二子问题;采用用迭代算法对第一子问题进行第k次迭代计算,得到高频复原图像xk,基于xk采用迭代算法对第二子问题进行第k次迭代计算,得到点扩散函数hk;根据计算得到点扩散函数,采用含有泊松噪声的多帧图像复原算法复原第f帧原始图像。本发明复原的图像拥有更好的视觉效果以及评价指标。
-
公开(公告)号:CN118446900B
公开(公告)日:2024-11-26
申请号:CN202410903731.0
申请日:2024-07-08
Applicant: 无锡学院
IPC: G06T3/4053 , G06T3/4007 , G06T3/4046 , G06T5/60 , G06T5/70
Abstract: 本发明公开了一种针对交通标志的图像超分辨率训练数据生成方法,包括以下步骤:步骤1:构建退化模型,所述退化模型用于生成退化序列;其中,退化模型的退化类型包括模糊降质、间隔采样、下采样、噪声和压缩;所述间隔采样包括:对原始交通标志图像的像素进行每隔一行采样,即间隔采样,来模拟原始交通标志图像的混叠过程;步骤2:将退化序列的顺序打乱,并应用于原始交通标志图像,生成退化图像;步骤3:使用上述可调降质模型生成接近真实场景中文字信息的退化图像,用于深度学习图像超分辨率网络模型的训练。针对智能驾驶汽车采集到的交通标志图像进行图像超分辨率,从而提高交通标志图像的清晰度与检测精确性。
-
公开(公告)号:CN118608802A
公开(公告)日:2024-09-06
申请号:CN202410956189.5
申请日:2024-07-17
Applicant: 无锡学院
IPC: G06V10/46 , G06N3/045 , G06N3/0895 , G06V10/762 , G06V10/764 , G06V10/82
Abstract: 本发明属于点云检测技术领域,具体涉及一种基于超类的点云关键点检测方法及其检测系统。步骤1:生成超类别点云的特征;步骤2:构建孪生网络模型,对其中的点云关键点检测采用MHSCPD算法;步骤3:对步骤2构建的孪生网络模型进行训练,实现点云关键点检测;所述步骤2具体为,在特征空间中利用MHSC的超类别的多头分类机制根据现有的点云在特征空间中的分布情况,自适应的选择虚拟超类锚点进行聚类,根据同类之间的私有特征调整同类特征差异较大的样本之间的距离。本发明可以大幅提升点云关键点检测方法的精度,同时具有更优秀的鲁棒性。
-
公开(公告)号:CN119152200B
公开(公告)日:2025-04-15
申请号:CN202411649311.0
申请日:2024-11-19
Applicant: 无锡学院
IPC: G06V10/25 , G06N3/0464 , G06N3/082 , G06V10/82 , G06V20/56
Abstract: 一种基于YOLOv8改进的自动驾驶目标检测方法。涉及自动驾驶领域,具体涉及基于YOLOv8改进的自动驾驶目标检测技术领域。其解决了多目标检测,提升模型在复杂背景下对密集小目标的检测精度,有效减少误检和漏检的问题。所述方法包括如下步骤:S1、数据集的建立与划分,并进行预处理;S2、构建基础的YOLOv8s模型;S3、优化YOLOv8s模型,具体为:S31、将YOLOv8s模型的主干部分中SPPF模块替换为改进的SPPF模块;S32、在YOLOv8s模型的头部部分添加一个小目标检测层;S33、在YOLOv8s模型的主干部分和颈部部分之间添加4个改进后的ACCoM模块;S4、采用预处理后的数据集对优化后的YOLOv8s模型进行迭代训练;S5、采用训练完成的YOLOv8s模型检测目标。
-
公开(公告)号:CN119152200A
公开(公告)日:2024-12-17
申请号:CN202411649311.0
申请日:2024-11-19
Applicant: 无锡学院
IPC: G06V10/25 , G06N3/0464 , G06N3/082 , G06V10/82 , G06V20/56
Abstract: 一种基于YOLOv8改进的自动驾驶目标检测方法。涉及自动驾驶领域,具体涉及基于YOLOv8改进的自动驾驶目标检测技术领域。其解决了多目标检测,提升模型在复杂背景下对密集小目标的检测精度,有效减少误检和漏检的问题。所述方法包括如下步骤:S1、数据集的建立与划分,并进行预处理;S2、构建基础的YOLOv8s模型;S3、优化YOLOv8s模型,具体为:S31、将YOLOv8s模型的主干部分中SPPF模块替换为改进的SPPF模块;S32、在YOLOv8s模型的头部部分添加一个小目标检测层;S33、在YOLOv8s模型的主干部分和颈部部分之间添加4个改进后的ACCoM模块;S4、采用预处理后的数据集对优化后的YOLOv8s模型进行迭代训练;S5、采用训练完成的YOLOv8s模型检测目标。
-
公开(公告)号:CN116958175A
公开(公告)日:2023-10-27
申请号:CN202311218213.7
申请日:2023-09-21
Applicant: 无锡学院
IPC: G06T7/11 , G06N3/0464 , G06N3/048 , G06N3/08 , G06V10/26 , G06V10/764 , G06V10/82
Abstract: 一种血液细胞分割网络及血液细胞分割方法。属于图像识别技术领域,具体涉及血液细胞图像的识别技术领域。其解决了以往深度学习的方式中,对于血液细胞显微图像中白细胞,白细胞核及红细胞三类同时分割研究较少的问题。所述血液细胞分割网络包括卷积层、空洞残差层、池化层和上采样层,血液细胞图像输入后,依次经过卷积层、空洞残差层、池化层和上采样层后输出,所述空洞残差层与上采样层跳跃连接。本发明所述网络及方法可以应用在血液细胞研究技术领域以及血液细胞分割技术领域。
-
公开(公告)号:CN119832221A
公开(公告)日:2025-04-15
申请号:CN202510307786.X
申请日:2025-03-17
Applicant: 无锡学院
Abstract: 基于YOLOv8改进算法的樱桃番茄成熟度检测方法。涉及图像识别领域,具体涉及基于YOLOv8模型的樱桃番茄在复杂环境下成熟度检测技术领域。解决了现有技术检测精度不够,处理密集目标能力不足的问题。所述方法包括如下步骤:预处理数据集;优化YOLOv8n模型:在YOLOv8n模型的主干部分中,将Conv模块替换为ADown模块;在YOLOv8n模型的颈部部分中,将C2F模块替换为VoVGSCSP模块、将Conv模块替换为GSConv模块以及添加EMA机制;采用测试集评估ASE‑YOLOv8n模型的性能,当置信度阙值大于0.6时,测试合格。
-
公开(公告)号:CN114037636A
公开(公告)日:2022-02-11
申请号:CN202111430920.3
申请日:2021-11-29
Applicant: 无锡学院
Abstract: 本发明公开了一种自适应光学系统校正图像的多帧盲复原方法,具体为:步骤1:采用梯度滤波器对第f帧退化图像g进行高频信息提取,得到提取后的高频信息;基于提取到的高频信息建立目标函数,用于估计与f帧退化图像对应的点扩散函数;基于交替迭代算法将目标函数分割成第一、二子问题;采用用迭代算法对第一子问题进行第k次迭代计算,得到高频复原图像xk,基于xk采用迭代算法对第二子问题进行第k次迭代计算,得到点扩散函数hk;根据计算得到点扩散函数,采用含有泊松噪声的多帧图像复原算法复原第f帧原始图像。本发明复原的图像拥有更好的视觉效果以及评价指标。
-
公开(公告)号:CN118446900A
公开(公告)日:2024-08-06
申请号:CN202410903731.0
申请日:2024-07-08
Applicant: 无锡学院
IPC: G06T3/4053 , G06T3/4007 , G06T3/4046 , G06T5/60 , G06T5/70
Abstract: 本发明公开了一种针对交通标志的图像超分辨率训练数据生成方法,包括以下步骤:步骤1:构建退化模型,所述退化模型用于生成退化序列;其中,退化模型的退化类型包括模糊降质、间隔采样、下采样、噪声和压缩;所述间隔采样包括:对原始交通标志图像的像素进行每隔一行采样,即间隔采样,来模拟原始交通标志图像的混叠过程;步骤2:将退化序列的顺序打乱,并应用于原始交通标志图像,生成退化图像;步骤3:使用上述可调降质模型生成接近真实场景中文字信息的退化图像,用于深度学习图像超分辨率网络模型的训练。针对智能驾驶汽车采集到的交通标志图像进行图像超分辨率,从而提高交通标志图像的清晰度与检测精确性。
-
-
-
-
-
-
-
-
-