-
公开(公告)号:CN118446900B
公开(公告)日:2024-11-26
申请号:CN202410903731.0
申请日:2024-07-08
Applicant: 无锡学院
IPC: G06T3/4053 , G06T3/4007 , G06T3/4046 , G06T5/60 , G06T5/70
Abstract: 本发明公开了一种针对交通标志的图像超分辨率训练数据生成方法,包括以下步骤:步骤1:构建退化模型,所述退化模型用于生成退化序列;其中,退化模型的退化类型包括模糊降质、间隔采样、下采样、噪声和压缩;所述间隔采样包括:对原始交通标志图像的像素进行每隔一行采样,即间隔采样,来模拟原始交通标志图像的混叠过程;步骤2:将退化序列的顺序打乱,并应用于原始交通标志图像,生成退化图像;步骤3:使用上述可调降质模型生成接近真实场景中文字信息的退化图像,用于深度学习图像超分辨率网络模型的训练。针对智能驾驶汽车采集到的交通标志图像进行图像超分辨率,从而提高交通标志图像的清晰度与检测精确性。
-
公开(公告)号:CN118446900A
公开(公告)日:2024-08-06
申请号:CN202410903731.0
申请日:2024-07-08
Applicant: 无锡学院
IPC: G06T3/4053 , G06T3/4007 , G06T3/4046 , G06T5/60 , G06T5/70
Abstract: 本发明公开了一种针对交通标志的图像超分辨率训练数据生成方法,包括以下步骤:步骤1:构建退化模型,所述退化模型用于生成退化序列;其中,退化模型的退化类型包括模糊降质、间隔采样、下采样、噪声和压缩;所述间隔采样包括:对原始交通标志图像的像素进行每隔一行采样,即间隔采样,来模拟原始交通标志图像的混叠过程;步骤2:将退化序列的顺序打乱,并应用于原始交通标志图像,生成退化图像;步骤3:使用上述可调降质模型生成接近真实场景中文字信息的退化图像,用于深度学习图像超分辨率网络模型的训练。针对智能驾驶汽车采集到的交通标志图像进行图像超分辨率,从而提高交通标志图像的清晰度与检测精确性。
-