-
公开(公告)号:CN116664232A
公开(公告)日:2023-08-29
申请号:CN202310599950.X
申请日:2023-05-25
Applicant: 安徽大学绿色产业创新研究院
IPC: G06Q30/0601 , G06F18/23 , G06N20/00
Abstract: 本发明公开了一种基于上下文老虎机的联邦个性化商品推荐方法,包括:1、各本地服务器收集其用户的行为数据,初始化各本地服务器参数;2、各本地服务器根据上下文老虎机算法选择最优臂,接收反馈并更新参数;3、中心服务器接收并聚合来自本地服务器的数据,并对本地服务器进行聚类;4、中心服务器和本地服务器进行协同训练,调整参数;5、重复步骤3‑4,直到达到预设的停止条件,从而得到基于上下文老虎机的联邦个性化推荐模型,用于对不同本地服务器潜在的异构用户作出推荐。本发明能为同一簇的用户推荐相似商品,并根据用户反馈和历史数据不断调整推荐策略,能适应不断变化的推荐环境要求,从而能提高推荐效果和用户满意度。
-
公开(公告)号:CN117171641A
公开(公告)日:2023-12-05
申请号:CN202311124140.5
申请日:2023-09-01
Applicant: 安徽大学绿色产业创新研究院
IPC: G06F18/241 , G06F18/2321 , G06F18/214 , G06N3/0442 , G01D21/02
Abstract: 本发明公开了一种基于改进DBSCAN算法和多尺度LSTM神经网络的气体浓度预测方法,包括:1、获取气体吸收光谱数据、实验环境的温度和湿度数据;2、使用改进DBSCAN聚类算法对原始数据进行筛选构造数据集并进行归一化处理;3、使用特征提取网络提取变量之间的特征并构造多尺度的LSTM神经网络气体浓度预测模型;4、使用气体浓度预测模型和测试集进行预测得到最终预测值。本发明通过对数据进行筛选和异常数据的修正,并根据修正后的数据集构造了多尺度LSTM神经网络,用于实现对气体浓度值的预测,为监测环境中的气体浓度变化提供了依据。
-