一种基于差分隐私保护的随机森林车流预测方法

    公开(公告)号:CN114118601A

    公开(公告)日:2022-03-01

    申请号:CN202111459013.1

    申请日:2021-12-02

    Abstract: 本发明公开了一种基于差分隐私保护的随机森林车流预测方法,包括:1、从交通系统中获取车流数据集;2、对车流数据集进行补空值、连续特征离散化以及为每棵决策树分配合理样本等预处理工作;3、随机森林训练前确定树与树之间和每棵树之内的隐私预算、分裂函数、每棵树最大深度以及总训练棵树等参数;4、根据前一步确定的参数训练出全部具有差分隐私保护的回归树;5、将所有差分隐私回归树组合成一个具有差分隐私保护的随机森林;6、将任意一个样本输入森林中得到一个具有差分隐私保护的预测结果。本发明能很好地解决隐私消耗问题、数据安全性问题以及准确率的问题,从而能在隐私消耗比较低的前提下提高车流的预测准确度。

    一种基于差分隐私保护的随机森林车流预测方法

    公开(公告)号:CN114118601B

    公开(公告)日:2024-02-13

    申请号:CN202111459013.1

    申请日:2021-12-02

    Abstract: 本发明公开了一种基于差分隐私保护的随机森林车流预测方法,包括:1、从交通系统中获取车流数据集;2、对车流数据集进行补空值、连续特征离散化以及为每棵决策树分配合理样本等预处理工作;3、随机森林训练前确定树与树之间和每棵树之内的隐私预算、分裂函数、每棵树最大深度以及总训练棵树等参数;4、根据前一步确定的参数训练出全部具有差分隐私保护的回归树;5、将所有差分隐私回归树组合成一个具有差分隐私保护的随机森林;6、将任意一个样本输入森林中得到一个具有差分隐私保护的预测结果。本发明能很好地解决隐私消耗问题、数据安全性问题以及准确率的问题,从而能在隐私消耗比较低的前提下提高车流的预测准确度。

Patent Agency Ranking