基于改进Deeplabv3+的轻量级遥感影像语义分割方法

    公开(公告)号:CN115984850A

    公开(公告)日:2023-04-18

    申请号:CN202310116702.5

    申请日:2023-02-15

    Applicant: 安徽大学

    Abstract: 本发明涉及一种基于改进Deeplabv3+的轻量级遥感影像语义分割方法,包括:通过遥感卫星获取不同情景下的图像,得到数据集;在数据集中选定分割对象,对分割对象进行语义标注和分割,进行图像增强,在图像增强后将整个数据集划分为训练集、测试集和验证集;构建改进的DeepLabv3+网络模型,采用训练集训练改进的DeepLabv3+网络模型;将测试集中的测试图像输入训练后的改进的DeepLabv3+网络模型,选定分割对象为田地、建筑群或水域,并保存语义分割的结果图像。本发明基于改进的DeepLabv3+网络模型,训练参数量较小、精度较高、边缘分割更细腻、有效改善孔洞问题;本发明系统针对田地、建筑群、水域多种分割对象,便于不同场景使用,智能便捷。

Patent Agency Ranking