-
公开(公告)号:CN115984850A
公开(公告)日:2023-04-18
申请号:CN202310116702.5
申请日:2023-02-15
Applicant: 安徽大学
IPC: G06V20/70 , G06V20/10 , G06V10/82 , G06N3/0464 , G06N3/08 , G06V10/774
Abstract: 本发明涉及一种基于改进Deeplabv3+的轻量级遥感影像语义分割方法,包括:通过遥感卫星获取不同情景下的图像,得到数据集;在数据集中选定分割对象,对分割对象进行语义标注和分割,进行图像增强,在图像增强后将整个数据集划分为训练集、测试集和验证集;构建改进的DeepLabv3+网络模型,采用训练集训练改进的DeepLabv3+网络模型;将测试集中的测试图像输入训练后的改进的DeepLabv3+网络模型,选定分割对象为田地、建筑群或水域,并保存语义分割的结果图像。本发明基于改进的DeepLabv3+网络模型,训练参数量较小、精度较高、边缘分割更细腻、有效改善孔洞问题;本发明系统针对田地、建筑群、水域多种分割对象,便于不同场景使用,智能便捷。
-
公开(公告)号:CN115565012A
公开(公告)日:2023-01-03
申请号:CN202211285868.1
申请日:2022-10-20
Applicant: 安徽大学
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06V20/10 , G06V20/52 , G06N3/04 , G06N3/08 , G06Q50/02 , G06Q50/26
Abstract: 本发明涉及一种基于自旋式Unet++网络的小麦条锈病夏孢子监测方法,包括:获取夏孢子显微图像;构建样本数据集;将样本数据集分为训练集、测试集和验证集;对Unet++网络模型进行改进,得到改进后的Unet++网络模型;将样本数据集中的图像输入至改进后的Unet++网络模型中,进行自旋式训练,得到夏孢子计数网络模型,并输出带检测框的样本数据集中的图像;训练夏孢子计数网络模型;将待检测的夏孢子显微图像输入到训练后的夏孢子计数网络模型,输出带检测框和计数的图像。本发明中夏孢子计数网络模型的计数准确率高,达到了99.03%;分割率较高,达到了86.45%;检测速率较高,达到了14张/秒,占用内存较小,仅为46.8MB。
-