一种基于改进的YOLOv3的微藻识别方法

    公开(公告)号:CN112784748A

    公开(公告)日:2021-05-11

    申请号:CN202110089255.X

    申请日:2021-01-22

    Abstract: 本发明提供一种基于改进的YOLOv3的微藻识别方法,包括:采集微藻显微图像,制作微藻图像的数据集;对数据集进行数据增强;将增强后的数据集分为训练集、验证集和测试集,对数据集中的微藻进行标注,生成标注图像;构建改进的YOLOv3目标检测模型;设置训练参数,基于数据集对构建的YOLOv3目标检测模型进行训练;基于训练完成的YOLOv3目标检测模型,对测试集图像进行分类和定位。本发明采用改进的YOLOv3目标检测模型,使用轻量级Mobilenet网络代替YOLOv3的原始特征提取网络darknet53,能够显著提高运行速度,大大减少网络参数,同时引入空间金字塔池结构SPP,能够在同一卷积层中以不同尺度合并和连接区域特征,使得在检测小物体时位置误差较小,使用CIoU优化损耗功能进一步提高检测精度。

Patent Agency Ranking