一种基于强化学习和进化算法的机器人优化控制方法

    公开(公告)号:CN114879486A

    公开(公告)日:2022-08-09

    申请号:CN202210186763.4

    申请日:2022-02-28

    Applicant: 复旦大学

    Abstract: 本发明涉及一种基于强化学习和进化算法的机器人优化控制方法,包括以下步骤:S1:获取待控制的机器人的状态空间和动作空间;初始化环境,获取所述的机器人的初始状态及对应样本,并存入经验池;S3:对初始动作添加高斯噪声,获取其状态进化动作对并存入档案馆;S4:获取每个时间步的样本及状态进化动作对,对应存储;S5:利用策略梯度更新策略网络的参数,利用进化动作梯度更新策略网络的参数;S6:逐步执行步骤S4~S5直到机器人翻倒或累计经过预设的轨迹时间步,机器人完成一条轨迹;S7:重新初始化环境,重复步骤S3~S6直到达到预设的最大时间步。与现有技术相比,本发明具有优化速度快,效果好等优点。

    一种机器人控制器设计方法

    公开(公告)号:CN112596379A

    公开(公告)日:2021-04-02

    申请号:CN202011483935.1

    申请日:2020-12-16

    Applicant: 复旦大学

    Abstract: 本发明提供了一种机器人控制器设计方法,用于针对传感器数量会变化的形态可变机器人对应的神经网络控制器进行设计从而使得神经网络控制器控制形态可变机器人完成任务,其特征在于,包括如下步骤:步骤S1,形态可变机器人通过预定数量的传感器获取接收值;步骤S2,将接收值输入预定的最优神经网络控制器并将输出作为形态可变机器人的电机转速从而控制形态可变机器人完成任务。其中,最优神经网络控制器通过预定的编码方法得到。编码方法包括如下步骤:先对所有传感器编号,进而利用进化算法按照传感器编号依次对不同形态下的神经网络控制器的网络结构进行进化,最后得到最优神经网络控制器。

    一种机器人小样本分拣方法
    3.
    发明公开

    公开(公告)号:CN116205266A

    公开(公告)日:2023-06-02

    申请号:CN202210189434.5

    申请日:2022-02-28

    Applicant: 复旦大学

    Abstract: 本发明涉及一种机器人小样本分拣方法,该方法包括:构建融合识别和抓取的端到端的机器人小样本分拣网络;根据元学习的方法,训练机器人小样本分拣网络使机器人适应不同的分拣任务。与现有技术相比,本发明少样本分拣元学习框架,赋予了机器人快速学习分拣训练集中没出现过的物体的能力,不仅是分拣目标物体,本发明还让机器人学会按照示范抓取时的抓取部位来抓取目标物体,同时,每次遇到新物体,只需给机器人一次分拣示范,机器人就会马上学会用合适的抓取姿势去抓取目标物体的目标部位,以此达到鲁棒和安全地分拣的目的。

    一种基于进化与学习的机器人自适应设计方法

    公开(公告)号:CN114879494A

    公开(公告)日:2022-08-09

    申请号:CN202210443825.5

    申请日:2022-04-25

    Applicant: 复旦大学

    Abstract: 本发明涉及一种基于进化与学习的机器人自适应设计方法,该方法包括:S1、随机生成机器人种群,对种群中机器人个体的形态和控制器基因进行编码;S2、对种群中机器人个体的性能进行评估;S3、遍历种群中的每个机器人个体,通过控制器的进化使得机器人在任务环境中进行学习,完成种群中每个机器人个体中控制器的优化;S4、采用进化算法产生新的机器人种群;S5、重复执行步骤S2~S4直到完成指定的迭代次,完成机器人设计。与现有技术相比,本发明不受机器人的形态限制,具备通用性。

    一种基于策略-价值网络及MCTS的自适应环境路径规划方法

    公开(公告)号:CN114815801A

    公开(公告)日:2022-07-29

    申请号:CN202111652498.6

    申请日:2021-12-30

    Applicant: 复旦大学

    Abstract: 本发明涉及一种基于策略‑价值网络及MCTS的自适应环境路径规划方法,包括:基于策略‑价值网络和MCTS算法构建路径规划模型,并对该模型进行训练;路径规划模型使用双头卷积神经网络pv‑network预测状态价值和可行空间的选择概率;初始化路径规划任务,获取路径起点与终点信息;将路径起点与终点信息输入路径规划模型,获得路径规划结果。与现有技术相比,本发明具有规划能力强、决策速度快、无需收集大量数据等优点。

    一种基于具有学习能力的智能蚁群算法的路径规划方法

    公开(公告)号:CN117420824A

    公开(公告)日:2024-01-19

    申请号:CN202310933886.4

    申请日:2023-07-27

    Applicant: 复旦大学

    Abstract: 本发明提供了一种基于具有学习能力的智能蚁群算法的路径规划方法,包括以下步骤:步骤S1,使用蚁群算法求解大量路径规划任务,根据得到的解构造训练数据集;步骤S2,使用深度学习网络作为智能蚂蚁的大脑模块,使用训练数据集对大脑模块进行训练,智能蚂蚁用于预测不同路径规划任务在不同阶段下可行方向的选择概率;步骤S3,训练结束后,将训练好的智能蚂蚁与蚁群算法的传统蚂蚁混合,构建得到混合智能蚁群;步骤S4,通过混合智能蚁群进行路径规划,混合智能蚁群根据智能蚂蚁预测的选择概率、混合智能蚁群积累的信息素浓度和节点之间的距离来选择下一次运动,同时传统蚂蚁保持进行随机探索,并根据智能蚂蚁和传统蚂蚁的结果进行信息素浓度的更新。

    一种基于多注意力机制的机器人视觉示教学习模型及方法

    公开(公告)号:CN114881240B

    公开(公告)日:2023-09-26

    申请号:CN202210189441.5

    申请日:2022-02-28

    Applicant: 复旦大学

    Abstract: 本发明涉及一种基于多注意力机制的机器人视觉示教学习模型及方法,该模型包括:图像特征预处理模块:包括若干级联的卷积层,用于提取图像的底层特征;卷积头模块:包括多个级联的卷积头,用于提取得到不同层次的特征图;域自适应模块:对不同层次的特征图进行计算构造多注意力内部损失,所述的多注意力内部损失用于自适应更新模型的策略参数;机器人动作预测模块:对不同层次的特征图进行残差连接后预测输出机器人动作。与现有技术相比,本发明通过提取不同层次的神经网络信息来学习机器人视觉任务,可以有效地增强模型的认知识别能力和任务适应能力。

    一种基于多注意力机制的机器人视觉示教学习模型及方法

    公开(公告)号:CN114881240A

    公开(公告)日:2022-08-09

    申请号:CN202210189441.5

    申请日:2022-02-28

    Applicant: 复旦大学

    Abstract: 本发明涉及一种基于多注意力机制的机器人视觉示教学习模型及方法,该模型包括:图像特征预处理模块:包括若干级联的卷积层,用于提取图像的底层特征;卷积头模块:包括多个级联的卷积头,用于提取得到不同层次的特征图;域自适应模块:对不同层次的特征图进行计算构造多注意力内部损失,所述的多注意力内部损失用于自适应更新模型的策略参数;机器人动作预测模块:对不同层次的特征图进行残差连接后预测输出机器人动作。与现有技术相比,本发明通过提取不同层次的神经网络信息来学习机器人视觉任务,可以有效地增强模型的认知识别能力和任务适应能力。

    一种基于强化学习和进化算法的机器人优化控制方法

    公开(公告)号:CN114879486B

    公开(公告)日:2024-11-08

    申请号:CN202210186763.4

    申请日:2022-02-28

    Applicant: 复旦大学

    Abstract: 本发明涉及一种基于强化学习和进化算法的机器人优化控制方法,包括以下步骤:S1:获取待控制的机器人的状态空间和动作空间;初始化环境,获取所述的机器人的初始状态及对应样本,并存入经验池;S3:对初始动作添加高斯噪声,获取其状态进化动作对并存入档案馆;S4:获取每个时间步的样本及状态进化动作对,对应存储;S5:利用策略梯度更新策略网络的参数,利用进化动作梯度更新策略网络的参数;S6:逐步执行步骤S4~S5直到机器人翻倒或累计经过预设的轨迹时间步,机器人完成一条轨迹;S7:重新初始化环境,重复步骤S3~S6直到达到预设的最大时间步。与现有技术相比,本发明具有优化速度快,效果好等优点。

    一种用于机器人分拣的自监督小样本实例分割方法

    公开(公告)号:CN114863160A

    公开(公告)日:2022-08-05

    申请号:CN202210187223.8

    申请日:2022-02-28

    Applicant: 复旦大学

    Abstract: 本发明涉及一种用于机器人分拣的自监督小样本实例分割方法,该方法包括:构建小样本实例分割网络,该网络为基于SOLO的神经网络模型;采用自监督策略对小样本实例分割网络进行训练。与现有技术相比,本发明提出了实时的端到端小样本实例分割框架,在增加很少的GPU使用内存的前提下实现了小样本多目标分割的目标,大大地提高了机器人的分拣速度,同时借鉴了对比学习的方法并充分利用了分拣背景的优势,提出了一个不需要标注数据的自监督训练策略,不仅极大地节省了宝贵的标注资源,还使得数据的扩充变得简单。

Patent Agency Ranking