一种具有随机发生不确定性和量化测量的非线性滤波方法

    公开(公告)号:CN108847829B

    公开(公告)日:2022-03-04

    申请号:CN201810814464.4

    申请日:2018-07-23

    Abstract: 本发明提供一种具有随机发生不确定性和量化测量的非线性滤波方法,属于状态估计技术领域。本发明首先建立具有随机发生不确定性和量化测量的非线性时变系统动态模型、对动态模型进行滤波器设计;然后计算一步预测误差协方差矩阵的上界;通过一步预测误差协方差矩阵的上界计算得到滤波增益矩阵Kk+1;再将滤波增益矩阵Kk+1代入步骤二的滤波器中,得到k+1时刻的状态估计并根据计算出的滤波增益矩阵Kk+1,计算出滤波误差协方差矩阵的上界Σk+1|k+1;重复上述步骤,直至满足达到滤波总时长。本发明解决了现有滤波技术不能同时处理随机发生不确定性和量化测量,进而导致滤波误差大的问题。本发明可用于非线性时变系统的滤波。

    一种具有随机发生不确定性和量化测量的非线性滤波方法

    公开(公告)号:CN108847829A

    公开(公告)日:2018-11-20

    申请号:CN201810814464.4

    申请日:2018-07-23

    Abstract: 本发明提供一种具有随机发生不确定性和量化测量的非线性滤波方法,属于状态估计技术领域。本发明首先建立具有随机发生不确定性和量化测量的非线性时变系统动态模型、对动态模型进行滤波器设计;然后计算一步预测误差协方差矩阵的上界;通过一步预测误差协方差矩阵的上界计算得到滤波增益矩阵Kk+1;再将滤波增益矩阵Kk+1代入步骤二的滤波器中,得到k+1时刻的状态估计 并根据计算出的滤波增益矩阵Kk+1,计算出滤波误差协方差矩阵的上界Σk+1|k+1;重复上述步骤,直至满足达到滤波总时长。本发明解决了现有滤波技术不能同时处理随机发生不确定性和量化测量,进而导致滤波误差大的问题。本发明可用于非线性时变系统的滤波。

Patent Agency Ranking