基于广义动态模糊神经网络的燃气日负荷组合预报方法

    公开(公告)号:CN102073785A

    公开(公告)日:2011-05-25

    申请号:CN201010561217.1

    申请日:2010-11-26

    Abstract: 本发明提供的是一种基于广义动态模糊神经网络的燃气日负荷组合预报方法。(1)采集城市燃气历史记录数据作为历史时间序列数据;(2)对历史时间序列数据进行异常数据判断和处理;(3)利用广义回归神经网络,对历史负荷时间序列即样本数据进行差分处理再通过网络进行预测;(4)利用灰色神经网络,将输入历史负荷时间序列的一次累加生成数据作为网络的输入,输出对应预测日负荷的一次累加生成数据,训练网络,最后将输出值进行一次累减逆生成处理;(5)将步骤(3)、(4)得到的预测值作为广义动态模糊神经网络的输入,并对数据进行分组。本发明针对燃气日负荷的随机性,不稳定性,周期性等特点,采用了组合预报的方法,预测精度更高。

    斜舵船舶垂荡和纵摇装置智能自适应控制方法

    公开(公告)号:CN101825871A

    公开(公告)日:2010-09-08

    申请号:CN201010142184.7

    申请日:2010-04-09

    Abstract: 本发明提供的是一种船舶斜舵减垂荡和纵摇装置(斜舵船舶垂荡与纵摇装置)智能自适应控制方法。利用测量系统测出斜舵船舶垂荡与纵摇装置的状态参数信息;换成数字信号经过滤波器后,送给控制器;控制器选择最优的斜舵船舶垂荡和纵摇装置智能自适应系统的控制输入;控制器所产生的控制信号经过数字/模拟转换器产生模拟信号并经过信号放大器增强后输出给执行机构;执行机构按指令执行,将整个系统变化到指定的工况下。本发明的优点在于适用于斜舵船舶垂荡和纵摇装置这样具有严重的非线性、耦合性、时变性的系统,控制精度高,鲁棒性好。

    斜舵船舶垂荡和纵摇装置智能自适应控制方法

    公开(公告)号:CN101825871B

    公开(公告)日:2012-09-26

    申请号:CN201010142184.7

    申请日:2010-04-09

    Abstract: 本发明提供的是一种船舶斜舵减垂荡和纵摇装置(斜舵船舶垂荡与纵摇装置)智能自适应控制方法。利用测量系统测出斜舵船舶垂荡与纵摇装置的状态参数信息;换成数字信号经过滤波器后,送给控制器;控制器选择最优的斜舵船舶垂荡和纵摇装置智能自适应系统的控制输入;控制器所产生的控制信号经过数字/模拟转换器产生模拟信号并经过信号放大器增强后输出给执行机构;执行机构按指令执行,将整个系统变化到指定的工况下。本发明的优点在于适用于斜舵船舶垂荡和纵摇装置这样具有严重的非线性、耦合性、时变性的系统,控制精度高,鲁棒性好。

    基于广义动态模糊神经网络的燃气日负荷组合预报方法

    公开(公告)号:CN102073785B

    公开(公告)日:2013-02-27

    申请号:CN201010561217.1

    申请日:2010-11-26

    Abstract: 本发明提供的是一种基于广义动态模糊神经网络的燃气日负荷组合预报方法。(1)采集城市燃气历史记录数据作为历史时间序列数据;(2)对历史时间序列数据进行异常数据判断和处理;(3)利用广义回归神经网络,对历史负荷时间序列即样本数据进行差分处理再通过网络进行预测;(4)利用灰色神经网络,将输入历史负荷时间序列的一次累加生成数据作为网络的输入,输出对应预测日负荷的一次累加生成数据,训练网络,最后将输出值进行一次累减逆生成处理;(5)将步骤(3)、(4)得到的预测值作为广义动态模糊神经网络的输入,并对数据进行分组。本发明针对燃气日负荷的随机性,不稳定性,周期性等特点,采用了组合预报的方法,预测精度更高。

Patent Agency Ranking