-
公开(公告)号:CN102073785A
公开(公告)日:2011-05-25
申请号:CN201010561217.1
申请日:2010-11-26
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种基于广义动态模糊神经网络的燃气日负荷组合预报方法。(1)采集城市燃气历史记录数据作为历史时间序列数据;(2)对历史时间序列数据进行异常数据判断和处理;(3)利用广义回归神经网络,对历史负荷时间序列即样本数据进行差分处理再通过网络进行预测;(4)利用灰色神经网络,将输入历史负荷时间序列的一次累加生成数据作为网络的输入,输出对应预测日负荷的一次累加生成数据,训练网络,最后将输出值进行一次累减逆生成处理;(5)将步骤(3)、(4)得到的预测值作为广义动态模糊神经网络的输入,并对数据进行分组。本发明针对燃气日负荷的随机性,不稳定性,周期性等特点,采用了组合预报的方法,预测精度更高。
-
公开(公告)号:CN102073785B
公开(公告)日:2013-02-27
申请号:CN201010561217.1
申请日:2010-11-26
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种基于广义动态模糊神经网络的燃气日负荷组合预报方法。(1)采集城市燃气历史记录数据作为历史时间序列数据;(2)对历史时间序列数据进行异常数据判断和处理;(3)利用广义回归神经网络,对历史负荷时间序列即样本数据进行差分处理再通过网络进行预测;(4)利用灰色神经网络,将输入历史负荷时间序列的一次累加生成数据作为网络的输入,输出对应预测日负荷的一次累加生成数据,训练网络,最后将输出值进行一次累减逆生成处理;(5)将步骤(3)、(4)得到的预测值作为广义动态模糊神经网络的输入,并对数据进行分组。本发明针对燃气日负荷的随机性,不稳定性,周期性等特点,采用了组合预报的方法,预测精度更高。
-