-
公开(公告)号:CN111610582A
公开(公告)日:2020-09-01
申请号:CN202010498463.0
申请日:2020-06-04
Applicant: 哈尔滨工程大学
IPC: G02B3/00
Abstract: 本发明属于光学设计领域,具体涉及是一种用于日冕观测的扇形微透镜阵列。本发明为一扇形微透镜阵列,用于积分视场单元的微透镜阵列为扇形,由多个不同尺寸的扇形微透镜单元组成;所述的扇形微透镜阵列,外层扇形微透镜单元的面积大于内层扇形微透镜单元,力求不同层的扇形微透镜单元通光量接近;扇形微透镜单元的外弧长与其径向长度成比例,以保证每个扇形微透镜单元的外接圆半径最小,使扇形微透镜单元具有最小的球差。本发明通过使扇形微透镜单元的径向长度随着日冕半径的增加而增加,或随着日冕半径的增加而使每扇形微透镜单元对应的圆心角增大,实现组成扇形微透镜阵列的每个扇形微透镜单元的通光量基本一致,保证了微透镜通光的均匀性。
-
公开(公告)号:CN111796413B
公开(公告)日:2022-04-05
申请号:CN202010632892.2
申请日:2020-07-02
Applicant: 哈尔滨工程大学
Abstract: 本发明涉及天文光纤瞄准技术领域,具体而言,涉及一种用于天文光纤瞄准的像切分装置。本发明包括异型微透镜阵列和光纤束两部分。其中,所述的异型微透镜阵列由一块中心圆形平板和周围多块扇形微透镜构成。本发明采用中心为圆形平板结构周围为多个扇形微透镜的异型微透镜阵列,在不改变科学主光纤入射光焦比的同时,实现光场能量100%覆盖,即偏离科学主光纤的光将被扇形微透镜耦合到侧光纤中,不存在探测盲区。
-
公开(公告)号:CN111610582B
公开(公告)日:2022-10-28
申请号:CN202010498463.0
申请日:2020-06-04
Applicant: 哈尔滨工程大学
IPC: G02B3/00
Abstract: 本发明属于光学设计领域,具体涉及是一种用于日冕观测的扇形微透镜阵列。本发明为一扇形微透镜阵列,用于积分视场单元的微透镜阵列为扇形,由多个不同尺寸的扇形微透镜单元组成;所述的扇形微透镜阵列,外层扇形微透镜单元的面积大于内层扇形微透镜单元,力求不同层的扇形微透镜单元通光量接近;扇形微透镜单元的外弧长与其径向长度成比例,以保证每个扇形微透镜单元的外接圆半径最小,使扇形微透镜单元具有最小的球差。本发明通过使扇形微透镜单元的径向长度随着日冕半径的增加而增加,或随着日冕半径的增加而使每扇形微透镜单元对应的圆心角增大,实现组成扇形微透镜阵列的每个扇形微透镜单元的通光量基本一致,保证了微透镜通光的均匀性。
-
公开(公告)号:CN111707206A
公开(公告)日:2020-09-25
申请号:CN202010498424.0
申请日:2020-06-04
Applicant: 哈尔滨工程大学
IPC: G01B11/16
Abstract: 本发明属于光纤传感应用领域,具体涉及一种用于对单点及多点发生微弯进行检测的带位置检测功能的量子点光纤微弯传感器。本发明使用紫外光作为激励光源,在光纤内部传播,当发生微弯损耗时,紫外光溢出纤芯激发涂覆在包层外特定位置的量子点颗粒,被激发的量子点发出特征光谱,并耦合回光纤纤芯,被探测端的光谱仪检测、分析,并确认微弯损耗发生位置和微弯程度。本发明使用光纤的数量与使用量子点的数量相同能最大化使用效率。如果使用N根光纤以及N种荧光材料,能将检测区域区分为N(N+1)个区域,相比初始的一种量子点只能检测一个位置有了大大的提高。
-
公开(公告)号:CN111796413A
公开(公告)日:2020-10-20
申请号:CN202010632892.2
申请日:2020-07-02
Applicant: 哈尔滨工程大学
Abstract: 本发明涉及天文光纤瞄准技术领域,具体而言,涉及一种用于天文光纤瞄准的像切分装置。本发明包括异型微透镜阵列和光纤束两部分。其中,所述的异型微透镜阵列由一块中心圆形平板和周围多块扇形微透镜构成。本发明采用中心为圆形平板结构周围为多个扇形微透镜的异型微透镜阵列,在不改变科学主光纤入射光焦比的同时,实现光场能量100%覆盖,即偏离科学主光纤的光将被扇形微透镜耦合到侧光纤中,不存在探测盲区。
-
公开(公告)号:CN111650695A
公开(公告)日:2020-09-11
申请号:CN202010498441.4
申请日:2020-07-20
Applicant: 哈尔滨工程大学
Abstract: 本发明属于光纤耦合技术领域,具体涉及一种用于光纤传输特性测量的空间光-光纤耦合对准方法。光纤耦合自动对准方法采用的耦合对准系统分为三个分系统:轴向对准系统、径向对准系统、角度对准系统,按照顺序进行轴向偏差、径向偏差、角度偏差的自动消除工作,实现光纤耦合的自动对准。本发明在考虑到多种耦合偏差的情况下,采用机器视觉的方法进行图像处理进行位置确定,同时将位置参数反馈给控制系统进行光纤耦合的自动对准,保证了对准精度,提高了光纤耦合效率,消除了由于入射光束与光纤耦合对焦比退化所造成的影响,有利于光纤的焦比退化和透射率等性能测试。
-
公开(公告)号:CN110261065A
公开(公告)日:2019-09-20
申请号:CN201910560103.6
申请日:2019-06-26
Applicant: 哈尔滨工程大学
IPC: G01M11/00
Abstract: 本发明涉及光纤特性测量领域,具体涉及一种天文光纤传输特性自动测量系统。包括电源部分、测量设备部分以及数据处理器系统部分。电源部分与整个系统的各个模块连接;测量设备部分包括光源入射焦比控制系统,光纤端面检测系统以及光纤传输特性测量系统三个系统,光源入射焦比控制系统位于整个系统光路前端,光纤端面检测系统位于整个系统光路中间,光纤传输特性测量系统位于整个系统光路末端;数据处理器系统部分与测量设备部分构成传输指令与数据的互连局域网。本发明可利用控制系统可自动控制电动光阑直径与电动光阑位置,实时获得光电探测器数据的目的。并且该系统可自动完成天文光纤透射率和出射焦比的测量。
-
公开(公告)号:CN110989073B
公开(公告)日:2020-12-22
申请号:CN201911364201.9
申请日:2019-12-23
Applicant: 哈尔滨工程大学
Abstract: 本发明属于光纤技术领域,具体涉及一种高能激光光纤束及其制作方法,由光纤、封装结构、端面固定结构三部分组成,光纤由内到外由纤芯、包层和透明涂覆层三层结构紧密贴合构成;封装结构包括导热硅脂和光纤束保护层两部分,导热硅脂均匀填充在多束光纤的间隙中,光纤束保护层包裹在导热硅脂外部;端面固定结构包括光纤束输入端的紫外固化胶封装面和光纤束输出端的微孔玻璃板。本发明的光纤束内部填充的导热硅脂可以减少光纤受到的应力作用,减少光纤传输损耗。此外,导热硅脂和光纤束保护层作为导热结构进行光纤束散热。输出端的微孔玻璃板解决高温下紫外固化胶定位失效的问题,在高温下进行光纤定位。
-
公开(公告)号:CN110989073A
公开(公告)日:2020-04-10
申请号:CN201911364201.9
申请日:2019-12-23
Applicant: 哈尔滨工程大学
Abstract: 本发明属于光纤技术领域,具体涉及一种高能激光光纤束及其制作方法,由光纤、封装结构、端面固定结构三部分组成,光纤由内到外由纤芯、包层和透明涂覆层三层结构紧密贴合构成;封装结构包括导热硅脂和光纤束保护层两部分,导热硅脂均匀填充在多束光纤的间隙中,光纤束保护层包裹在导热硅脂外部;端面固定结构包括光纤束输入端的紫外固化胶封装面和光纤束输出端的微孔玻璃板。本发明的光纤束内部填充的导热硅脂可以减少光纤受到的应力作用,减少光纤传输损耗。此外,导热硅脂和光纤束保护层作为导热结构进行光纤束散热。输出端的微孔玻璃板解决高温下紫外固化胶定位失效的问题,在高温下进行光纤定位。
-
-
-
-
-
-
-
-