一种纳米导电聚合物的制备方法
    2.
    发明公开

    公开(公告)号:CN116333305A

    公开(公告)日:2023-06-27

    申请号:CN202310150048.X

    申请日:2023-02-21

    Abstract: 本发明涉及导电聚合物合成领域,尤其涉及一种纳米导电聚合物的制备方法。该方法将引发剂制成引发剂冰体,随后通过微融冰释放引发剂的方式有效控制聚合体系的反应温度,使整个聚合反应能够始终保持在冰点进行,并且通过控制引发剂冰体的体积和数量,还可以控制引发剂的释放速率,最终得到质地均匀、形貌良好的纳米导电聚合物。解决了导电聚合物制备过程中,反应温度不稳定及引发剂加入速率不均匀导致的导电聚合物质地不均匀及产率低等问题。

    一种锂镧锆氧材料及其制备方法和应用以及一种锂热电池及其制备方法

    公开(公告)号:CN117285071A

    公开(公告)日:2023-12-26

    申请号:CN202311237695.0

    申请日:2023-09-25

    Abstract: 本发明涉及锂热电池电解质和粘结剂的改性技术领域,尤其涉及一种锂镧锆氧材料及其制备方法和应用以及一种锂热电池及其制备方法。本发明将锆源、镧源、锂源、分散剂混合得到的混合物进行煅烧,得到锂镧锆氧材料;并将制得的锂镧锆氧材料、正极活性物质和全锂电解质混合后作为正极材料,制得的锂镧锆氧材料和全锂电解质混合后作为电解质,与负极组装成锂热电池。该锂热电池具有较好的放电性能;由于锂镧锆氧较好的热稳定性以及导电性的特征,其不仅可替代传统的粘结剂氧化镁以提高锂热电池的电化学性能,而且可部分替代全锂电解质,减小全锂电解质的用量从而改善锂热电池的融溢问题。

    一种析氢催化电极及其制备方法和应用

    公开(公告)号:CN115233252A

    公开(公告)日:2022-10-25

    申请号:CN202211013633.7

    申请日:2022-08-23

    Abstract: 本发明涉及电解水析氢催化剂领域。本发明提供了一种析氢催化电极及其制备方法和应用。首先将泡沫镍基体置于含有钴盐、镍盐、次磷酸钠以及络合剂的混合溶液中,反应得到钴镍磷合金材料;然后将钴镍磷合金材料进行煅烧,得到煅烧后的钴镍磷合金材料;最后将煅烧后的钴镍磷合金材料与磷源加热,即得所述的析氢催化电极。本发明的制备方法经济成本低,制备流程简便易操作,通过高温磷化在钴镍磷合金的基础上继续引入磷元素改善了材料的导电性及耐蚀性;本发明提供的析氢催化电极为纳米级的链球状颗粒,结构和性能十分稳定,在碱性环境中的耐腐蚀性优异,便于存储,具有良好的析氢催化活性。

    一种析氢催化电极及其制备方法和应用

    公开(公告)号:CN115233252B

    公开(公告)日:2024-12-27

    申请号:CN202211013633.7

    申请日:2022-08-23

    Abstract: 本发明涉及电解水析氢催化剂领域。本发明提供了一种析氢催化电极及其制备方法和应用。首先将泡沫镍基体置于含有钴盐、镍盐、次磷酸钠以及络合剂的混合溶液中,反应得到钴镍磷合金材料;然后将钴镍磷合金材料进行煅烧,得到煅烧后的钴镍磷合金材料;最后将煅烧后的钴镍磷合金材料与磷源加热,即得所述的析氢催化电极。本发明的制备方法经济成本低,制备流程简便易操作,通过高温磷化在钴镍磷合金的基础上继续引入磷元素改善了材料的导电性及耐蚀性;本发明提供的析氢催化电极为纳米级的链球状颗粒,结构和性能十分稳定,在碱性环境中的耐腐蚀性优异,便于存储,具有良好的析氢催化活性。

    一种极端低温高压电解液及其制备方法和应用

    公开(公告)号:CN119965340A

    公开(公告)日:2025-05-09

    申请号:CN202510131694.0

    申请日:2025-02-06

    Abstract: 本发明提供了一种极端低温高压电解液及其制备方法和应用,属于锂离子电池技术领域。本发明所述极端低温高压电解液包括混合锂盐电解质、多元溶剂和添加剂,通过优化电解液的组成,降低电解液的熔点,优化离子迁移环境,重新构建溶剂化结构,促进Li+脱溶剂化,增加电解液可自由移动Li+的数量,从而提升电解液的电导率和离子扩散动力学;同时构建均匀、稳定的电极/电解液界面,提升电池的低温界面动力学和电化学稳定性,综合作用提升了电池的综合电化学性能,解决了现有锂离子电池在极端低温下输出容量和功率不足等问题。

    一种中空球状镍锰酸锂正极材料及其制备方法

    公开(公告)号:CN111613788B

    公开(公告)日:2022-10-14

    申请号:CN202010507400.7

    申请日:2020-06-05

    Abstract: 本发明属于电池材料制备技术领域。本发明提供了一种中空球状镍锰酸锂正极材料的制备方法。将混合后的镍源、锰源和溶剂与碳酸盐溶液反应,生成前驱体;将前驱体悬浊液和草酸混合,并顺次进行干燥、研磨和烧结,即可得到中空球状镍锰酸锂正极材料。本发明提供的制备方法简化了合成工序,提高了生产效率,具有简单、环保,易于规模化生产等优点。本发明还提供了所述制备方法得到的中空球状镍锰酸锂正极材料。本发明所制备的镍锰酸锂材料为中空球状,包含了纳米尺寸的尖晶石颗粒和由尖晶石颗粒组成的微米尺寸的二次颗粒,具有较高的放电比容量和良好的循环稳定性。

    一种冈田酸三维金纳米柱阵列免疫电极的制备方法

    公开(公告)号:CN108845121B

    公开(公告)日:2021-11-09

    申请号:CN201810649493.X

    申请日:2018-06-22

    Abstract: 本发明涉及一种冈田酸三维金纳米柱阵列免疫电极的制备方法,其采用化学沉积‑电沉积方法在孔径为80~200 nm的聚碳酸酯滤膜上沉积金,得到三维金纳米柱阵列电极;在三维金纳米柱阵列电极表面通过循环伏安法电聚合修饰聚硫堇,形成聚硫堇/三维金纳米柱阵列电极;在聚硫堇/三维金纳米柱阵列电极上结合戊二醛,再将冈田酸抗体固定到戊二醛上,形成冈田酸抗体/戊二醛/聚硫堇/三维金纳米柱阵列电极;最后用牛血清蛋白封闭电极,制得冈田酸三维金纳米柱阵列免疫电极。本发明电极具有三维结构,表面积大,制备简单,稳定性好,抗体固定牢固,操作简便,检测限低,灵敏度高,可实现快速检测。

Patent Agency Ranking