具有时间序列状态变量的工业设备故障检测方法

    公开(公告)号:CN114595767B

    公开(公告)日:2025-01-10

    申请号:CN202210223287.9

    申请日:2022-03-07

    Abstract: 一种具有时间序列状态变量的工业设备故障检测方法,属于工业设备故障检测领域。本发明针对现有工业系统的故障检测依赖故障数据建立检测模型,故障数据获取难度大造成方法难以适用的问题。包括:采集时间序列状态数据作为训练数据;计算训练数据m维特征变量的均值和标准差,并对训练数据进行标准化;对标准化后时间序列数据采用滑动窗口进行分割得到序列数据P,对LSTM自编码网络进行训练;再基于训练后LSTM自编码网络获得训练数据的误差序列;基于极值理论的方法对误差序列进行分析,得到故障阈值;再基于待检测设备序列数据对故障阈值进行调整,得到调整后阈值,进而实现工业设备的故障检测。本发明用于变量具有时序特征的工业设备的故障检测。

    具有时间序列状态变量的工业设备故障检测方法

    公开(公告)号:CN114595767A

    公开(公告)日:2022-06-07

    申请号:CN202210223287.9

    申请日:2022-03-07

    Abstract: 一种具有时间序列状态变量的工业设备故障检测方法,属于工业设备故障检测领域。本发明针对现有工业系统的故障检测依赖故障数据建立检测模型,故障数据获取难度大造成方法难以适用的问题。包括:采集时间序列状态数据作为训练数据;计算训练数据m维特征变量的均值和标准差,并对训练数据进行标准化;对标准化后时间序列数据采用滑动窗口进行分割得到序列数据P,对LSTM自编码网络进行训练;再基于训练后LSTM自编码网络获得训练数据的误差序列;基于极值理论的方法对误差序列进行分析,得到故障阈值;再基于待检测设备序列数据对故障阈值进行调整,得到调整后阈值,进而实现工业设备的故障检测。本发明用于变量具有时序特征的工业设备的故障检测。

Patent Agency Ranking