-
公开(公告)号:CN111951975A
公开(公告)日:2020-11-17
申请号:CN202010839209.2
申请日:2020-08-19
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种基于深度学习模型GPT-2的脓毒症早期预警方法,在选定的时间跨度内提取ICU内病患的特征变量,组成一个高维度、随时间变化的序列,并将该序列经过数据预处理后输入到基于改进的GPT-2模型中以结合病患的近期临床表现提取到与ICU病患目前病情最接近的一种有效表示,将得到的该表示输入到一个全连接前馈网络层预测患者在接下来的时间内患有脓毒症的概率。本发明可以最大程度利用ICU内的病患常规指标,并可以根据时间的变化来预测病患面临的风险,类似于重症监护医生每日查房期间反复分析和更新重症监护病房的患者管理,该方法结合病患前几天的临床表现,根据大量可用数据做出预测结果,具有时效性,准确度更高。
-
公开(公告)号:CN111951975B
公开(公告)日:2022-03-25
申请号:CN202010839209.2
申请日:2020-08-19
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种基于深度学习模型GPT‑2的脓毒症早期预警方法,在选定的时间跨度内提取ICU内病患的特征变量,组成一个高维度、随时间变化的序列,并将该序列经过数据预处理后输入到基于改进的GPT‑2模型中以结合病患的近期临床表现提取到与ICU病患目前病情最接近的一种有效表示,将得到的该表示输入到一个全连接前馈网络层预测患者在接下来的时间内患有脓毒症的概率。本发明可以最大程度利用ICU内的病患常规指标,并可以根据时间的变化来预测病患面临的风险,类似于重症监护医生每日查房期间反复分析和更新重症监护病房的患者管理,该方法结合病患前几天的临床表现,根据大量可用数据做出预测结果,具有时效性,准确度更高。
-