一种基于斥力模型修正随机矩阵算法的群组目标跟踪方法

    公开(公告)号:CN109035301B

    公开(公告)日:2021-10-01

    申请号:CN201810761110.8

    申请日:2018-07-11

    Abstract: 一种基于斥力模型修正随机矩阵算法的群组目标跟踪方法,本发明涉及基于斥力模型修正随机矩阵算法的群组目标跟踪方法。本发明为了解决现有方法计算复杂度高和精度低的问题。本发明包括:一:建立群组目标运动时的空间斥力模型和特征子空间斥力模型;二:将步骤一建立的群组目标运动时的空间斥力模型和特征子空间斥力转换到直角坐标系下;三:用步骤二转换到直角坐标系下的特征子空间斥力模型修正雷达量测值,并用步骤二转换到直角坐标系下的空间斥力模型修正随机矩阵算法的运动方程和修正量测方程的特性预测协方差。本发明与交互多模型随机矩阵算法相比,队列估计精度提高了11.79%,位置估计精度提高了21.12%。本发明用于群组目标跟踪领域。

    一种基于斥力模型修正随机矩阵算法的群组目标跟踪方法

    公开(公告)号:CN109035301A

    公开(公告)日:2018-12-18

    申请号:CN201810761110.8

    申请日:2018-07-11

    CPC classification number: G06T7/251 G06T2207/30108

    Abstract: 一种基于斥力模型修正随机矩阵算法的群组目标跟踪方法,本发明涉及基于斥力模型修正随机矩阵算法的群组目标跟踪方法。本发明为了解决现有方法计算复杂度高和精度低的问题。本发明包括:一:建立群组目标运动时的空间斥力模型和特征子空间斥力模型;二:将步骤一建立的群组目标运动时的空间斥力模型和特征子空间斥力转换到直角坐标系下;三:用步骤二转换到直角坐标系下的特征子空间斥力模型修正雷达量测值,并用步骤二转换到直角坐标系下的空间斥力模型修正随机矩阵算法的运动方程和修正量测方程的特性预测协方差。本发明与交互多模型随机矩阵算法相比,队列估计精度提高了11.79%,位置估计精度提高了21.12%。本发明用于群组目标跟踪领域。

Patent Agency Ranking