-
公开(公告)号:CN106197424A
公开(公告)日:2016-12-07
申请号:CN201610487801.4
申请日:2016-06-28
Applicant: 哈尔滨工业大学
IPC: G01C21/20
CPC classification number: G01C21/20
Abstract: 本发明提供了一种遥测数据驱动的无人机飞行状态识别方法,本发明提出一种基于切比雪夫特征提取和随机森林分类算法(Chebyshev-Random Forest Algorithm,C-RF算法)的无人机状态识别方法。采用Chebyshev拟合法对无人机的遥测数据进行特征提取和降维,利用随机森林算法实现飞行状态的自适应分类。所提出方法将Chebyshev拟合系数计算简单、接近最佳拟合的优点与随机森林算法的训练速度快、分类准确率高和抗噪能力强等优点相结合,可覆盖无人机的各类样本且避免过拟合问题,实现了无人机飞行状态的有效识别。采用真实无人机飞行遥测数据进行验证,总体识别准确率高于90%,少类样本同样被准确识别,证明了所提出方法的有效性和实用性。
-
公开(公告)号:CN106197424B
公开(公告)日:2019-03-22
申请号:CN201610487801.4
申请日:2016-06-28
Applicant: 哈尔滨工业大学
IPC: G01C21/20
Abstract: 本发明提供了一种遥测数据驱动的无人机飞行状态识别方法,本发明提出一种基于切比雪夫特征提取和随机森林分类算法(Chebyshev‑Random Forest Algorithm,C‑RF算法)的无人机状态识别方法。采用Chebyshev拟合法对无人机的遥测数据进行特征提取和降维,利用随机森林算法实现飞行状态的自适应分类。所提出方法将Chebyshev拟合系数计算简单、接近最佳拟合的优点与随机森林算法的训练速度快、分类准确率高和抗噪能力强等优点相结合,可覆盖无人机的各类样本且避免过拟合问题,实现了无人机飞行状态的有效识别。采用真实无人机飞行遥测数据进行验证,总体识别准确率高于90%,少类样本同样被准确识别,证明了所提出方法的有效性和实用性。
-