-
公开(公告)号:CN115673312A
公开(公告)日:2023-02-03
申请号:CN202211485701.X
申请日:2022-11-24
Applicant: 哈尔滨工业大学 , 中国电子科技集团公司第三十八研究所
Abstract: 本发明涉及一种纳米颗粒增强镁基复合材料及其制备方法,所述方法包括如下步骤:用水将纳米颗粒与盐分散均匀,得到纳米颗粒盐溶液;将纳米颗粒盐溶液烘干,得到纳米颗粒与盐的混合物;将纳米颗粒与盐的混合物置于高温条件下使盐熔化,得到熔盐基纳米流体;往熔盐基纳米流体中加入镁并使镁熔化,形成熔炼体系;将熔炼体系进行高温保温处理,再经凝固,制得纳米颗粒增强镁基复合材料。本发明基于液态冶金法,在高温下,无需采用保护气,也能避免高温下纳米颗粒和镁熔体的氧化燃烧,不采用机械搅拌,也能实现纳米颗粒与镁熔体的很好复合,可以避免复合材料中气孔、夹杂缺陷较多的问题,有利于提高材料的力学性能。
-
公开(公告)号:CN118957345A
公开(公告)日:2024-11-15
申请号:CN202410951578.9
申请日:2024-07-16
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种碳化锆颗粒、碳化锆颗粒增强镁基复合材料及其制备方法,属于碳化锆颗粒制备技术领域。本发明通过与镁熔体的气液反应将CO2和或CO气体中的碳源固化为纳米级的碳粉末,并通过添加镁锆中间合金,在镁熔体中原位反应产生碳化锆颗粒,同时熔体中均匀分散的纳米碳材促进了碳化锆颗粒增强镁基复合材料中碳化锆颗粒的均匀分布,从而创造出具有较高缺陷密度和反应活性的碳反应原料,显著降低碳化锆陶瓷颗粒的合成温度,还有效避免了杂质的引入,从而显著提高镁基复合材料制备的力学性能和制备效率;本发明提供的方法制备采用短流程、低成本的液态冶金方法,避免了直接添加粉末的安全风险,实现了碳化锆颗粒的合成及对镁基体的协同强化。
-
公开(公告)号:CN115852196B
公开(公告)日:2024-03-29
申请号:CN202211485682.0
申请日:2022-11-24
Applicant: 哈尔滨工业大学 , 中国电子科技集团公司第三十八研究所
Abstract: 本发明涉及一种碳化钛纳米颗粒增强镁基复合材料及其制备方法,所述方法:用水将碳化钛纳米颗粒与盐分散均匀,经烘干,得到碳化钛纳米颗粒与盐的混合物;将碳化钛纳米颗粒与盐的混合物置于高温条件下使盐熔化,得到熔盐基纳米流体;往熔盐基纳米流体中加入镁合金并使镁合金熔化,形成熔炼体系;将熔炼体系进行高温保温处理,再经凝固,得到复合材料;将复合材料进行热变形,得到碳化钛纳米颗粒增强镁基复合材料。本发明基于液态冶金法,在高温下,无需采用保护气,也能避免高温下镁合金熔体的氧化燃烧,不采用机械搅拌,也能实现碳化钛纳米颗粒与镁合金熔体的很好复合,可以避免复合材料中气孔、夹杂缺陷较多的问题,有利于提高材料的力学性能。
-
公开(公告)号:CN115852196A
公开(公告)日:2023-03-28
申请号:CN202211485682.0
申请日:2022-11-24
Applicant: 哈尔滨工业大学 , 中国电子科技集团公司第三十八研究所
Abstract: 本发明涉及一种碳化钛纳米颗粒增强镁基复合材料及其制备方法,所述方法:用水将碳化钛纳米颗粒与盐分散均匀,经烘干,得到碳化钛纳米颗粒与盐的混合物;将碳化钛纳米颗粒与盐的混合物置于高温条件下使盐熔化,得到熔盐基纳米流体;往熔盐基纳米流体中加入镁合金并使镁合金熔化,形成熔炼体系;将熔炼体系进行高温保温处理,再经凝固,得到复合材料;将复合材料进行热变形,得到碳化钛纳米颗粒增强镁基复合材料。本发明基于液态冶金法,在高温下,无需采用保护气,也能避免高温下镁合金熔体的氧化燃烧,不采用机械搅拌,也能实现碳化钛纳米颗粒与镁合金熔体的很好复合,可以避免复合材料中气孔、夹杂缺陷较多的问题,有利于提高材料的力学性能。
-
公开(公告)号:CN118639044A
公开(公告)日:2024-09-13
申请号:CN202410714399.3
申请日:2024-06-04
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种多尺度增强体耦合增强镁基复合材料的制备方法,属于复合材料技术领域,包括以下步骤:S1、对微米增强体和基体进行预处理;S2、进行高温高粘度分散框架的搭建,形成含有石墨烯纳米片和氧化镁纳米颗粒(GNPs&MgOnp)的镁熔体;S3、对高温高粘度分散框架进行填充,得到多尺度耦合增强镁基复合材料熔体;S4、进行压铸和热变形处理。本发明基于液态冶金法,通过气液反应原位自生引入纳米增强体实现镁熔体粘度的调控,避免纳米颗粒的氧化燃烧,创造出含有大量纳米增强体的高温高粘度分散环境,解决了微米颗粒界面结合差、分散难的问题,实现微米增强体的均匀分散及与镁基体的良好界面结合,实现微纳米增强体对镁基体的协同增强。
-
-
-
-