一种基于整体端到端非稳态虹膜认知识别的身份确认方法

    公开(公告)号:CN112364840B

    公开(公告)日:2022-03-29

    申请号:CN202011430507.2

    申请日:2020-12-09

    Applicant: 吉林大学

    Abstract: 本发明公开了一种基于整体端到端非稳态虹膜认知识别的身份确认方法,方法为:步骤一、采集虹膜灰度图像2000张;步骤二、设定该名模板测试人员的眼睛图像特征;步骤三、设定该名模板测试人员的虹膜质量特征;步骤四、转化模板虹膜归一图像;步骤五、设定32位模板特征;步骤六、重复步骤一到步骤五;步骤七、采集虹膜灰度图像1张;步骤八、提取眼睛图像信息;步骤九、提取虹膜质量信息;步骤十、提取模板虹膜特征信息;步骤十一、测试虹膜归一图像;步骤十二、测试虹膜特征信息;步骤十三、提取的模板测试人员的模板特征的匹配值;有益效果:提高了方案的整体性,提高数据特征表达与识别的契合度,提高识别的准确性以及数据的可用性。

    一种文本分类模型可解释性方法的性能评价方法及装置

    公开(公告)号:CN111597423B

    公开(公告)日:2021-03-19

    申请号:CN202010439318.5

    申请日:2020-05-22

    Applicant: 吉林大学

    Abstract: 本发明公开了一种文本分类模型可解释性方法的性能评价方法及装置,其方法为:第一步、采集分类标签的描述性词表;第二步、通过可解释性方法对模型决策所依赖的显著性特征进行提取;第三步、计算可解释性方法所提取显著性特征的覆盖率,用以评估方法性能,评价装置包括有采集模块、存储模块、识别模块和计算模块,其中采集模块分别与存储模块和识别模块相连接,识别模块与计算模块相连接,有益效果:为不同可解释性方法的效果和性能提供了一种评价方法和标准。能够有效的对比不同可解释性方法的优劣提供量化指标,进而对可解释性方法进行性能上的改进提供效果上的参考。

    一种基于强化泛用型虹膜特征标签的轻量级身份验证方法

    公开(公告)号:CN110728251B

    公开(公告)日:2020-05-12

    申请号:CN201911005205.8

    申请日:2019-10-22

    Applicant: 吉林大学

    Abstract: 本发明公开了一种基于强化泛用型虹膜特征标签的轻量级身份验证方法,其方法为:步骤一、采集模板虹膜灰度图像两张;步骤二、分别处理两张模板虹膜灰度图像;步骤三、将模板特征标签存储到IC卡中;步骤四、通过虹膜采集仪采集测试虹膜灰度图像一张;步骤五、处理测试虹膜灰度图像;步骤六、提取180×30维度测试虹膜处理图像的特征标签;步骤七、通过读卡器读取IC卡中存储的模板特征标签,利用模板虹膜灰度图像的特征标签与测试虹膜灰度图像的特征标签实现身份验证。有益效果:有利于虹膜识别系统的推广;有效提高了不同虹膜类别特征的区分度,进而提高了虹膜验证的准确率。

    一种具有盗取攻击应对机制的异质虹膜认证方法

    公开(公告)号:CN110046588B

    公开(公告)日:2019-11-01

    申请号:CN201910321473.4

    申请日:2019-04-22

    Applicant: 吉林大学

    Abstract: 本发明公开了一种具有盗取攻击应对机制的异质虹膜认证方法,其方法为:步骤一、构建基于卷积神经网络而改进的异质虹膜多类别认证系统;步骤二、构建盗取攻击应对机制;步骤三、开始正式认证;步骤四、图像依次进入全连接层;步骤五、得到与单一分类器所属的虹膜的相似概率;步骤六、得到精确的相似概率;步骤七、通过编码层的映射关系,输出测试虹膜所属的虹膜类别情况。有益效果:对传统的卷积神经网络进行改造,增加图像处理层和稀释层,有助于在多类别认证中放大不同类别虹膜间的差异性,提高认证的准确性。

    一种改进的包含多重边信息与多任务学习的深度推荐方法

    公开(公告)号:CN112487200A

    公开(公告)日:2021-03-12

    申请号:CN202011337565.0

    申请日:2020-11-25

    Applicant: 吉林大学

    Abstract: 本发明公开了一种改进的包含多重边信息与多任务学习的深度推荐方法,其方法为:步骤一、输入用户以及项目的相关数据以及知识图谱的三元组;步骤二、对项目属性以及用户属性进行分类;步骤三、处理文本类属性;步骤四、处理多值属性;步骤五、通过用户以及项目属性进行用户项目特征表示;步骤六、将项目属性与知识图谱的头属性进行交叉训练;步骤七、迭代更新用户向量、项目向量、知识图谱头部尾部向量;步骤八、损失函数学习。本发明的有益效果:提出SI‑MKR,可以将传统MKR模型的三个模块进行创新,发展为四个模块,将不可构造成知识图谱三元组的属性进行提前处理,针对每个属性值进行初始化。

    一种基于虹膜与私钥证书链连接存储结构的身份验证方法

    公开(公告)号:CN111130794B

    公开(公告)日:2020-11-24

    申请号:CN201911270600.9

    申请日:2019-12-12

    Applicant: 吉林大学

    Abstract: 本发明公开了一种基于虹膜与私钥证书链连接存储结构的身份验证方法,其方法为:步骤一、采集灰度图像;步骤二、归一增强图像;步骤三、模板虹膜特征信息;步骤四、统计模板虹膜特征信息;步骤五、制作私钥证书;步骤六、存入个人信息块中;步骤七、构建完整记录;步骤八、制作完整记录;步骤九、输出给测试人员数字0;步骤十、测试虹膜灰度图像一张;步骤十一、测试虹膜归一增强图像;步骤十二、读取模板特征标签;步骤十三、进行身份验证;有益效果:非法用户盗取证书后即使通过了证书校验,也会因为无法通过虹膜识别校验导致无法得到正确的结果,因此通过私钥证书与虹膜识别的双重机制防止了用户个人信息被篡改以及被非法用户侵入的风险。

    一种基于虹膜与私钥证书链连接存储结构的身份验证方法

    公开(公告)号:CN111130794A

    公开(公告)日:2020-05-08

    申请号:CN201911270600.9

    申请日:2019-12-12

    Applicant: 吉林大学

    Abstract: 本发明公开了一种基于虹膜与私钥证书链连接存储结构的身份验证方法,其方法为:步骤一、采集灰度图像;步骤二、归一增强图像;步骤三、模板虹膜特征信息;步骤四、统计模板虹膜特征信息;步骤五、制作私钥证书;步骤六、存入个人信息块中;步骤七、构建完整记录;步骤八、制作完整记录;步骤九、输出给测试人员数字0;步骤十、测试虹膜灰度图像一张;步骤十一、测试虹膜归一增强图像;步骤十二、读取模板特征标签;步骤十三、进行身份验证;有益效果:非法用户盗取证书后即使通过了证书校验,也会因为无法通过虹膜识别校验导致无法得到正确的结果,因此通过私钥证书与虹膜识别的双重机制防止了用户个人信息被篡改以及被非法用户侵入的风险。

Patent Agency Ranking