-
公开(公告)号:CN112800906B
公开(公告)日:2022-08-30
申请号:CN202110068030.6
申请日:2021-01-19
Applicant: 吉林大学
IPC: G06V20/56 , G06V10/82 , G06V10/774 , G06N3/04 , G06N3/08
Abstract: 本发明属于计算机视觉和自动驾驶汽车环境感知技术领域,具体的说是一种基于改进YOLOv3的自动驾驶汽车跨域目标检测方法。本发明基于改进的单阶段YOLOv3检测算法框架,采用生成对抗网络模型获得训练集数据,针对训练集和测试集分别来自不同分布的数据域的问题进行跨域目标检测。同时通过对YOLOv3算法进行改进提高了单阶段目标检测的精度,生成对抗网络的应用减少了对不同数据域之间多类别目标物的重新标注,一定程度上解决了自动驾驶汽车跨域目标检测面临的难点问题。
-
公开(公告)号:CN112800906A
公开(公告)日:2021-05-14
申请号:CN202110068030.6
申请日:2021-01-19
Applicant: 吉林大学
Abstract: 本发明属于计算机视觉和自动驾驶汽车环境感知技术领域,具体的说是一种基于改进YOLOv3的自动驾驶汽车跨域目标检测方法。本发明基于改进的单阶段YOLOv3检测算法框架,采用生成对抗网络模型获得训练集数据,针对训练集和测试集分别来自不同分布的数据域的问题进行跨域目标检测。同时通过对YOLOv3算法进行改进提高了单阶段目标检测的精度,生成对抗网络的应用减少了对不同数据域之间多类别目标物的重新标注,一定程度上解决了自动驾驶汽车跨域目标检测面临的难点问题。
-