-
公开(公告)号:CN117853456A
公开(公告)日:2024-04-09
申请号:CN202410037862.5
申请日:2024-01-10
Applicant: 厦门理工学院
Abstract: 本发明涉及一种基于上下文驱动的边缘增强医学图像分割方法。包括:步骤S1、图像经过数据增强预处理,划分数据集;步骤S2、图像经过GHPA编码器,编码为图像特征向量;步骤S3、将编码器浅层特征与深层高级语义信息互相融合得到包含丰富语义的边缘信息;步骤S4、进一步增强所得到特征图的边缘特征,设计一种简单有效的金字塔特征提取方案,用于挖掘每个阶段的边缘多粒度信息;步骤S5、将编码器相邻两层特征图进行拼接;步骤S6、最后将编码器的四个输出特征图D1,D2,D3,D4相加得到最终分割图。本发明方法适用于各种医学图像的分割任务,有效的加强了医学图像现存的边缘对比度低,边缘模糊等问题,提高了模型的特征提取能力。
-
公开(公告)号:CN113704731A
公开(公告)日:2021-11-26
申请号:CN202111039516.3
申请日:2021-09-06
Abstract: 本发明公开了一种面向医院的患者异常就医行为检测系统,包括就医异常检测分析器(1)、数据存储平台(2)、身份识别模块(3)、人员就医数据获取模块(4)、人员购药数据获取模块(5)、健康体检数据获取模块(6)和就医异常报警模块(7);其中:所述就医异常检测分析器(1)分别和所述数据存储平台(2)、身份识别模块(3)、人员就医数据获取模块(4)、人员购药数据获取模块(5)、健康体检数据获取模块(6)和就医异常报警模块(7)数据通信连接。本申请通过大数据的方法,分析用户的药品购买习惯、常去的医院,形成用户的购药和医院画像,而在人员去医院就医或药店购买药品时,本申请的系统核对药品明细,医院,在存在购药从而防止利用医保卡购买非医保物品,保护医保卡的安全性。
-
公开(公告)号:CN113379764B
公开(公告)日:2023-06-02
申请号:CN202110621825.5
申请日:2021-06-02
Applicant: 厦门理工学院
Abstract: 本发明涉及一种基于域对抗自监督学习的病理图像分割方法。包括:获取病理图像建立病理图像自监督数据集;建立域对抗自监督模型;使用病理图像自监督数据集对域对抗自监督模型进行深度学习训练;建立病理图像分割模型;使用经过深度学习后的域对抗自监督模型对病理图像分割模型进行初始化;对病理图像中的病灶区域进行像素级别标注建立病理图像分割数据集;使用病理图像分割数据集对病理图像分割模型进行深度学习训练;使用深度学习训练后的病理图像分割模型对病理图像的未知病灶区域进行分割。本发明方法,采用域对抗自监督学习的方法,有效缓解了分割模型对大量人工标注的依赖并解决了模型在不同域上分割性能波动的问题。
-
公开(公告)号:CN113888090A
公开(公告)日:2022-01-04
申请号:CN202111174933.9
申请日:2021-10-09
Applicant: 中国人民解放军32251部队 , 厦门理工学院
IPC: G06Q10/08 , G16H40/20 , G06F16/2458 , G06N3/04
Abstract: 本发明公开了一种基于LSTM的医院药品采购计划预测系统,包括AI服务器(1)、大数据存储模块(2)、采购管理系统交互端(3)、LSTM模块(4)和药品使用获取接口(5)和药品下架管理模块(10);其中,所述AI服务器(1)通过数据通信网络分别和大数据存储模块(2)、采购管理系统交互端(3)和药品使用获取接口(5)数据通信连接,所述AI服务器(1)还和所述LSTM模块(4)数据通信连接,所述LSTM模块(4)还和所述大数据存储模块(2)数据通信连接。本申请中采用LSTM方法对大数据进行处理分析,排除数据异常点,从而使得医院药品的采购更加准确,不会被异常数据所影响。而对异常数据进行分析,确定是否发现了突发疾病,从而更好地维持城市的整体健康,检索突然疾病和传染疾病。
-
公开(公告)号:CN113674292B
公开(公告)日:2023-08-01
申请号:CN202110941684.5
申请日:2021-08-17
IPC: G06V10/26 , G06N3/0464 , G06N3/08 , G16H30/20 , G06T7/00
Abstract: 本发明公开一种基于部分实例标注的半监督骨髓瘤细胞实例分割方法,包括:对已确诊的骨髓瘤显微图像中的部分骨髓瘤细胞实例进行标注,生成第一轮骨髓瘤细胞实例分割数据集;使用第一轮骨髓瘤细胞实例分割数据集对骨髓瘤细胞实例分割模型进行第一轮深度学习训练;使用第一轮深度学习训练后的模型对未标注的骨髓瘤细胞实例进行分割,生成第二轮骨髓瘤细胞实例分割数据集;使用第二轮骨髓瘤细胞实例分割数据集对第一轮训练后的模型进行第二轮深度学习训练;使用第二轮深度学习训练后的模型对其他骨髓瘤显微图像的骨髓瘤细胞实例进行分割。本发明的骨髓瘤细胞实例分割方法,降低了人工分割骨髓瘤细胞的标注成本,且具有较高的分割召回率。
-
公开(公告)号:CN113674292A
公开(公告)日:2021-11-19
申请号:CN202110941684.5
申请日:2021-08-17
Abstract: 本发明公开一种基于部分实例标注的半监督骨髓瘤细胞实例分割方法,包括:对已确诊的骨髓瘤显微图像中的部分骨髓瘤细胞实例进行标注,生成第一轮骨髓瘤细胞实例分割数据集;使用第一轮骨髓瘤细胞实例分割数据集对骨髓瘤细胞实例分割模型进行第一轮深度学习训练;使用第一轮深度学习训练后的模型对未标注的骨髓瘤细胞实例进行分割,生成第二轮骨髓瘤细胞实例分割数据集;使用第二轮骨髓瘤细胞实例分割数据集对第一轮训练后的模型进行第二轮深度学习训练;使用第二轮深度学习训练后的模型对其他骨髓瘤显微图像的骨髓瘤细胞实例进行分割。本发明的骨髓瘤细胞实例分割方法,降低了人工分割骨髓瘤细胞的标注成本,且具有较高的分割召回率。
-
公开(公告)号:CN113379764A
公开(公告)日:2021-09-10
申请号:CN202110621825.5
申请日:2021-06-02
Applicant: 厦门理工学院
Abstract: 本发明涉及一种基于域对抗自监督学习的病理图像分割方法。包括:获取病理图像建立病理图像自监督数据集;建立域对抗自监督模型;使用病理图像自监督数据集对域对抗自监督模型进行深度学习训练;建立病理图像分割模型;使用经过深度学习后的域对抗自监督模型对病理图像分割模型进行初始化;对病理图像中的病灶区域进行像素级别标注建立病理图像分割数据集;使用病理图像分割数据集对病理图像分割模型进行深度学习训练;使用深度学习训练后的病理图像分割模型对病理图像的未知病灶区域进行分割。本发明方法,采用域对抗自监督学习的方法,有效缓解了分割模型对大量人工标注的依赖并解决了模型在不同域上分割性能波动的问题。
-
-
-
-
-
-