-
公开(公告)号:CN110972309B
公开(公告)日:2022-07-19
申请号:CN201911089450.1
申请日:2019-11-08
Applicant: 厦门大学 , 京信网络系统股份有限公司
Abstract: 本发明公开了一种联合图信号与强化学习的超密集无线网络功率分配方法,方法包括:S1,获取无向图,并根据无向图构建邻接矩阵和权值矩阵;S2,计算每个顶点的干扰参数,并计算网络平滑度,以及根据网络平滑度计算网络环境参数;S3,对超密集无线网络的功率进行再次分配,并计算再次分配后的网络环境参数,以及根据该网络环境参数计算回报函数值;S4,根据该回报函数值进行再次分配,并计算再次分配后的网络环境参数,以及根据该网络环境参数计算回报函数值;重复步骤S4,直至得到最大累积回报函数值,停止超密集无线网络功率分配;从而实现在超密集无线网络中进行自组织、自优化的功率分配,进而降低超密集无向网络的干扰程度,有效提高网络性能。
-
公开(公告)号:CN109548073A
公开(公告)日:2019-03-29
申请号:CN201811365815.4
申请日:2018-11-16
Applicant: 厦门大学 , 京信通信系统(广州)有限公司
IPC: H04W24/10 , H04B17/318 , H04L12/715 , H04W16/18
Abstract: 一种基于多对多匹配的自适应小小区分簇方法,其特征在于,包括如下步骤:S1.用户根据自身接收到的RSRP信息生成RSRP列表,并自发周期性地向连接的小小区上报该RSRP列表;S2.基于多对一匹配为每个小小区生成自己的最优先用户组,直至遍历所有用户及其RSRP列表;S3.进行基于多对多匹配算法的自适应小小区分簇,直至遍历最优先用组;S4.输出分簇匹配结果。本发明的基于多对多匹配的自适应小小区分簇方法,考虑5G场景采用的新技术,分簇结果稳定,算法的复杂度低。
-
公开(公告)号:CN109548073B
公开(公告)日:2020-09-25
申请号:CN201811365815.4
申请日:2018-11-16
Applicant: 厦门大学 , 京信通信系统(广州)有限公司
IPC: H04W24/10 , H04B17/318 , H04L12/715 , H04W16/18
Abstract: 一种基于多对多匹配的自适应小小区分簇方法,其特征在于,包括如下步骤:S1.用户根据自身接收到的RSRP信息生成RSRP列表,并自发周期性地向连接的小小区上报该RSRP列表;S2.基于多对一匹配为每个小小区生成自己的最优先用户组,直至遍历所有用户及其RSRP列表;S3.进行基于多对多匹配算法的自适应小小区分簇,直至遍历最优先用组;S4.输出分簇匹配结果。本发明的基于多对多匹配的自适应小小区分簇方法,考虑5G场景采用的新技术,分簇结果稳定,算法的复杂度低。
-
公开(公告)号:CN110972309A
公开(公告)日:2020-04-07
申请号:CN201911089450.1
申请日:2019-11-08
Applicant: 厦门大学 , 京信通信系统(广州)有限公司
Abstract: 本发明公开了一种联合图信号与强化学习的超密集无线网络功率分配方法,方法包括:S1,获取无向图,并根据无向图构建邻接矩阵和权值矩阵;S2,计算每个顶点的干扰参数,并计算网络平滑度,以及根据网络平滑度计算网络环境参数;S3,对超密集无线网络的功率进行再次分配,并计算再次分配后的网络环境参数,以及根据该网络环境参数计算回报函数值;S4,根据该回报函数值进行再次分配,并计算再次分配后的网络环境参数,以及根据该网络环境参数计算回报函数值;重复步骤S4,直至得到最大累积回报函数值,停止超密集无线网络功率分配;从而实现在超密集无线网络中进行自组织、自优化的功率分配,进而降低超密集无向网络的干扰程度,有效提高网络性能。
-
-
-