-
公开(公告)号:CN108406135B
公开(公告)日:2019-12-27
申请号:CN201810235477.6
申请日:2018-03-21
Applicant: 厦门大学
IPC: B23Q7/00 , B23K26/38 , B23K26/402 , B23K26/08 , B23K26/70
Abstract: 一种陶瓷基板连续化激光切割装置及其切割方法,涉及陶瓷基板切割。根据连续碳化硅薄膜基板的特性,利用传动装置和激光切割装置相结合的模式,在激光的照射下对基板进行切割。同时合陶瓷薄膜的特征,通过海绵在基板切割处两边施加一定的压力,给予基板一定的强度的同时起到应力缓冲的作用,不仅解决了薄膜基板在割断瞬间的碎裂问题,还保证基板在切割时不易位,切割痕无毛刺。同时在传动装置的带动下可对连续化基板进行连续切割,实现自动化机械化操作,大大提高了切割效率。利用通过更换不同长度的链板即可将多条连续碳化硅陶瓷薄膜基板切割成器件要求的不同尺寸,实现其在功率型半导体器件封装的应用。
-
公开(公告)号:CN108802098A
公开(公告)日:2018-11-13
申请号:CN201810673293.8
申请日:2018-06-26
Applicant: 厦门大学
Abstract: 一种连续碳化硅薄膜热导率的测量装置及其测量方法,涉及碳化硅薄膜热导率的测量。测量装置设有热源装置、电子式万能拉力试验机、温度测量装置和计算机。所述热源装置由信号源和高热导螺旋电阻丝组成。所述电子式万能拉力试验机带有样品夹持装置并可通过计算机的程序控制样品夹持装置的移动距离。所述温度测量装置设有非接触式红外测温仪探头和锁相放大器。所述计算机可控制电子式万能拉力试验机夹具的移动距离并能够处理锁相放大器采集到的信号,进行相应的数据分析。所述测量方法利用能够探测样品上各点热量信号与热源信号的相位差值,通过图像拟合和公式推导可计算得出薄膜材料热导率。
-
公开(公告)号:CN108129151A
公开(公告)日:2018-06-08
申请号:CN201711494377.7
申请日:2017-12-31
Applicant: 厦门大学
IPC: C04B35/571 , C04B35/622
Abstract: 一种石墨烯/碳化硅纳米复合结构单片陶瓷及其制备方法,涉及陶瓷材料制备。1)先驱体PCS(GOx)的合成;2)石墨烯/碳化硅纳米复合结构单片陶瓷SiC(rGOx)的制备。以GO、VTES、PCS为原料,通过化学改性的方法制备先驱体PCS(GOx)粉末,经模压成型、高温热解步骤,即得致密的石墨烯/碳化硅纳米复合结构单片陶瓷SiC(rGOx)。其中VTES因具有–Si–O–键和–CH=CH2基团,可将GO和PCS复合生成新的GO–VTES–PCS大分子结构。GO复合到碳化硅陶瓷中可显著扩大先驱体交联面积、抑制SiC纳米晶体形成、降低烧结温度,解决先驱体法制备碳化硅单片陶瓷成型困难、致密性差问题。
-
公开(公告)号:CN110467467B
公开(公告)日:2020-10-02
申请号:CN201910826944.7
申请日:2019-09-03
Applicant: 厦门大学
IPC: C04B35/571 , C04B35/577 , C04B35/622
Abstract: 一种块体碳化硅聚合物先驱体陶瓷及共混再裂解制备方法,涉及陶瓷材料制备。所述块体碳化硅聚合物先驱体陶瓷命名为3D‑SiC(rGO)陶瓷,由β‑SiC、SiOxCy、SiO2、rGO和游离碳组成,其中β‑SiC纳米晶弥散分布于复合rGO的SiOxCy/Cfree无定形相中,SiO2晶粒镶嵌于β‑SiC/SiOxCy/Cfree基体中。该陶瓷以自制改性聚合物先驱体聚碳硅烷‑乙烯基三乙氧基硅烷‑氧化石墨烯为原料,与该先驱体裂解后获得的SiC(rGO)p粉末按比例混合、球磨、再裂解制得。具有较高陶瓷产率和较低线性收缩率,硬度和断裂韧性表现好,微观结构均匀致密,较少孔隙、微裂纹和界面,实用性和可靠性强。
-
公开(公告)号:CN108406135A
公开(公告)日:2018-08-17
申请号:CN201810235477.6
申请日:2018-03-21
Applicant: 厦门大学
IPC: B23K26/38 , B23K26/402 , B23K26/08 , B23K26/70
Abstract: 一种陶瓷基板连续化激光切割装置及其切割方法,涉及陶瓷基板切割。根据连续碳化硅薄膜基板的特性,利用传动装置和激光切割装置相结合的模式,在激光的照射下对基板进行切割。同时合陶瓷薄膜的特征,通过海绵在基板切割处两边施加一定的压力,给予基板一定的强度的同时起到应力缓冲的作用,不仅解决了薄膜基板在割断瞬间的碎裂问题,还保证基板在切割时不易位,切割痕无毛刺。同时在传动装置的带动下可对连续化基板进行连续切割,实现自动化机械化操作,大大提高了切割效率。利用通过更换不同长度的链板即可将多条连续碳化硅陶瓷薄膜基板切割成器件要求的不同尺寸,实现其在功率型半导体器件封装的应用。
-
公开(公告)号:CN108802098B
公开(公告)日:2020-03-10
申请号:CN201810673293.8
申请日:2018-06-26
Applicant: 厦门大学
Abstract: 一种连续碳化硅薄膜热导率的测量装置及其测量方法,涉及碳化硅薄膜热导率的测量。测量装置设有热源装置、电子式万能拉力试验机、温度测量装置和计算机。所述热源装置由信号源和高热导螺旋电阻丝组成。所述电子式万能拉力试验机带有样品夹持装置并可通过计算机的程序控制样品夹持装置的移动距离。所述温度测量装置设有非接触式红外测温仪探头和锁相放大器。所述计算机可控制电子式万能拉力试验机夹具的移动距离并能够处理锁相放大器采集到的信号,进行相应的数据分析。所述测量方法利用能够探测样品上各点热量信号与热源信号的相位差值,通过图像拟合和公式推导可计算得出薄膜材料热导率。
-
公开(公告)号:CN108129151B
公开(公告)日:2020-02-18
申请号:CN201711494377.7
申请日:2017-12-31
Applicant: 厦门大学
IPC: C04B35/571 , C04B35/622
Abstract: 一种石墨烯/碳化硅纳米复合结构单片陶瓷及其制备方法,涉及陶瓷材料制备。1)先驱体PCS(GOx)的合成;2)石墨烯/碳化硅纳米复合结构单片陶瓷SiC(rGOx)的制备。以GO、VTES、PCS为原料,通过化学改性的方法制备先驱体PCS(GOx)粉末,经模压成型、高温热解步骤,即得致密的石墨烯/碳化硅纳米复合结构单片陶瓷SiC(rGOx)。其中VTES因具有–Si–O–键和–CH=CH2基团,可将GO和PCS复合生成新的GO–VTES–PCS大分子结构。GO复合到碳化硅陶瓷中可显著扩大先驱体交联面积、抑制SiC纳米晶体形成、降低烧结温度,解决先驱体法制备碳化硅单片陶瓷成型困难、致密性差问题。
-
公开(公告)号:CN110467467A
公开(公告)日:2019-11-19
申请号:CN201910826944.7
申请日:2019-09-03
Applicant: 厦门大学
IPC: C04B35/571 , C04B35/577 , C04B35/622
Abstract: 一种块体碳化硅聚合物先驱体陶瓷及共混再裂解制备方法,涉及陶瓷材料制备。所述块体碳化硅聚合物先驱体陶瓷命名为3D-SiC(rGO)陶瓷,由β-SiC、SiOxCy、SiO2、rGO和游离碳组成,其中β-SiC纳米晶弥散分布于复合rGO的SiOxCy/Cfree无定形相中,SiO2晶粒镶嵌于β-SiC/SiOxCy/Cfree基体中。该陶瓷以自制改性聚合物先驱体聚碳硅烷-乙烯基三乙氧基硅烷-氧化石墨烯为原料,与该先驱体裂解后获得的SiC(rGO)p粉末按比例混合、球磨、再裂解制得。具有较高陶瓷产率和较低线性收缩率,硬度和断裂韧性表现好,微观结构均匀致密,较少孔隙、微裂纹和界面,实用性和可靠性强。
-
公开(公告)号:CN108727596A
公开(公告)日:2018-11-02
申请号:CN201810672025.4
申请日:2018-06-26
Applicant: 厦门大学
Abstract: 有机硅聚合物发光材料的制备方法及其OLED器件应用,涉及有机发光材料。将研磨成粉的PCS和9-乙烯基蒽分别溶解于二甲苯中,并向9-乙烯基蒽的二甲苯溶液中加入催化剂,活化后将PCS和9-乙烯基蒽的溶液混合置于容器中;设置好升温程序,在惰性气体气氛下保温,发生反应,待反应结束后让整个体系自然冷却至室温;将反应后的混合溶液进行负压旋转蒸馏以除去溶剂,得到淡黄色固体,再干燥,即得有机硅聚合物发光材料。提高PCS分子的相对分子质量,扩大共轭体系,增强了荧光发射性能,还通过结合PCS易成膜,可卷曲的特性,有效解决了蒽难成膜,易聚集结晶的应用难题。
-
公开(公告)号:CN208280348U
公开(公告)日:2018-12-25
申请号:CN201820338727.4
申请日:2018-03-13
Applicant: 厦门大学 , 厦门市政工程有限公司
IPC: E04B1/84 , C04B28/02 , C04B111/52
Abstract: 一种兼顾吸声的贝壳骨料薄膜空间吸声构件,涉及吸声构件。设有面层、附着层、空腔、吸声层;所述面层为贝壳骨料薄膜面层,面层附着在附着层上,空腔设在附着层的背后,所述空腔内填充吸声层。所述面层可通过喷枪将贝壳骨料浆液喷涂在镂空附着层上形成贝壳骨料吸声薄膜。面层背后的空腔内部填充各类容重的玻璃棉或岩棉形成吸声层,以便调整和改善贝壳骨料薄膜吸声构造的吸声频谱特性。附着层、空腔及吸声层的厚度根据实际声学设计测算进行优化。通过改变吸声层相应的玻璃棉或岩棉的容重、厚度,可以调整贝壳骨料薄膜构造的吸声频谱特性。
-
-
-
-
-
-
-
-
-