-
公开(公告)号:CN113419934B
公开(公告)日:2022-07-08
申请号:CN202110676313.9
申请日:2021-06-18
Applicant: 南瑞集团有限公司 , 国电南瑞科技股份有限公司
Abstract: 本发明公开了一种基于回归预测方法监测KPI指标中的单点数据异常、连续数据异常、相关性异常等多元数据异常的方法。方法主要包括以下步骤:对数据集进行预处理,分析数据集的周期性,趋势,相关性等统计属性;对数据集通过统计建模或机器学习算法计算预测值;计算实际值与预测值的异常分数,并利用3‑sigma准则进行异常值的监测;针对单点异常,直接通过准则监测;针对连续异常,为降低连续异常对预测的影响,采取一个周期内的预测平均值进行异常分数计算。使用标准度量方法AUC和PRAUC来评估算法精度。在本方法中可以采用多种机器学习回归算法进行预测值计算,针对多元异常提出针对性解决方案,使算法更具灵活性,对数据的异常类型监测也更全面。
-
公开(公告)号:CN113419934A
公开(公告)日:2021-09-21
申请号:CN202110676313.9
申请日:2021-06-18
Applicant: 南瑞集团有限公司 , 国电南瑞科技股份有限公司
Abstract: 本发明公开了一种基于回归预测方法监测KPI指标中的单点数据异常、连续数据异常、相关性异常等多元数据异常的方法。方法主要包括以下步骤:对数据集进行预处理,分析数据集的周期性,趋势,相关性等统计属性;对数据集通过统计建模或机器学习算法计算预测值;计算实际值与预测值的异常分数,并利用3‑sigma准则进行异常值的监测;针对单点异常,直接通过准则监测;针对连续异常,为降低连续异常对预测的影响,采取一个周期内的预测平均值进行异常分数计算。使用标准度量方法AUC和PRAUC来评估算法精度。在本方法中可以采用多种机器学习回归算法进行预测值计算,针对多元异常提出针对性解决方案,使算法更具灵活性,对数据的异常类型监测也更全面。
-
公开(公告)号:CN114064396A
公开(公告)日:2022-02-18
申请号:CN202111251415.2
申请日:2021-10-27
Applicant: 南瑞集团有限公司 , 国电南瑞科技股份有限公司
Abstract: 本发明公开了一种KPI数据异常分数确定方法、异常检测方法及系统,利用编码器、解码器的自注意力机制与编码‑解码注意力机制,对含有故障信息的时序KPI数据进行异常检测,得到每一时刻的异常分数;最后,使用高斯先验分布生成得到正常分数,计算出其均值与方差,并依此对输出的异常分数进行异常判定,得到异常分析结果。本发明对时序KPI数据进行异常检测,便于运维人员快速获得KPI数据中的异常信息。
-
-