-
公开(公告)号:CN119441743B
公开(公告)日:2025-05-13
申请号:CN202510028699.0
申请日:2025-01-08
IPC: G06F18/10 , G06N3/006 , G06F18/2131
Abstract: 本发明公开了一种变压器声纹信号去噪方法,包括如下步骤:使用声音采集装置采集变压器声纹信号;采用改进山猫优化算法对时变滤波经验模态分解的带宽阈值和B样条阶数进行优化,再使用优化后的时变滤波经验模态分解将采集到的变压器声纹信号分解成本征模态函数;采用滑动窗对本征模态函数进行分段截取,并且将截取后的本征模态函数构建成三阶信号张量;将构建的三阶信号张量输入贝叶斯高斯张量分解模型中进行分解重构,再根据张量构造逆过程将重构后的三阶信号张量还原成一维向量;本发明运用改进后的山猫优化算法优化时变滤波经验模态分解的参数,避免了分解时的混叠现象。
-
公开(公告)号:CN118998005B
公开(公告)日:2025-03-07
申请号:CN202411484598.6
申请日:2024-10-23
Applicant: 南昌工程学院
IPC: F03D17/00 , G06N3/006 , G06N7/08 , G06F18/2411
Abstract: 本发明公开了一种基于声纹信号的风机叶片故障诊断方法,包括如下步骤:对风机叶片声纹信号进行采集,并进行滤波处理;通过完全集成经验模态分解方法将滤波处理后的声纹信号分解为多个本征模态函数;将本征模态函数转换为二维镜像雪花图,并进行归一化处理;通过改进红嘴蓝鹊优化算法对支持向量机内部惩罚参数以及核参数进行优化,得到IRBMO‑SVM模型;将归一化处理后的二维镜像雪花图输入IRBMO‑SVM模型中进行故障诊断;本发明采用改进红嘴蓝鹊优化算法优化支持向量机,提高了支持向量机计算效率,进而提高了对风机叶片的故障诊断精度。
-
公开(公告)号:CN119378555A
公开(公告)日:2025-01-28
申请号:CN202411961988.8
申请日:2024-12-30
Applicant: 南昌工程学院 , 南昌左宸科技有限公司
IPC: G06F40/295 , G06F40/242 , G06F40/126 , G06N3/0464 , G06N3/0455
Abstract: 本发明公开了基于可动态组合多头注意力的电力领域命名实体识别方法,包括如下步骤:构建LERoBERTa‑DCMHA模型,将采集的电力文本字词序列输入模型中,得到电力文本字词序列的字特征向量;根据词典组合与电力文本字词序列,进行电力词汇词向量训练,得到电力文本字词序列的词特征向量;将字特征向量与词特征向量进行特征融合,获得电力文本字词序列的特征向量;对电力文本字词序列的特征向量进行双向特征编码,得到输出状态序列;对输出状态序列进行标注概率排序,获得最终的实体识别结果;本发明通过添加可动态组合多头注意力和卷积池化层TextCNN至预训练语言模型中,提高了模型命名实体识别的性能和准确度。
-
公开(公告)号:CN118998005A
公开(公告)日:2024-11-22
申请号:CN202411484598.6
申请日:2024-10-23
Applicant: 南昌工程学院
IPC: F03D17/00 , G06N3/006 , G06N7/08 , G06F18/2411
Abstract: 本发明公开了一种基于声纹信号的风机叶片故障诊断方法,包括如下步骤:对风机叶片声纹信号进行采集,并进行滤波处理;通过完全集成经验模态分解方法将滤波处理后的声纹信号分解为多个本征模态函数;将本征模态函数转换为二维镜像雪花图,并进行归一化处理;通过改进红嘴蓝鹊优化算法对支持向量机内部惩罚参数以及核参数进行优化,得到IRBMO‑SVM模型;将归一化处理后的二维镜像雪花图输入IRBMO‑SVM模型中进行故障诊断;本发明采用改进红嘴蓝鹊优化算法优化支持向量机,提高了支持向量机计算效率,进而提高了对风机叶片的故障诊断精度。
-
公开(公告)号:CN119106338B
公开(公告)日:2025-03-25
申请号:CN202411595325.9
申请日:2024-11-11
Applicant: 南昌工程学院
IPC: G06F18/241 , G06F18/214 , G06F18/25 , G06N3/0464 , G06N3/044 , G06N3/006 , G01H17/00 , G06F123/02
Abstract: 本发明公开了一种变压器铁芯松动故障声纹诊断方法,包括如下步骤:利用小波变换将采集到的声纹时序数据转换成声纹特征图谱;建立基于熵权法的传感器动态响应数据融合算法,并根据声纹时序数据的相对重要程度对声纹特征图谱实时融合,得到小波动态融合声纹特征图谱;采用改进冠豪猪优化算法对改进的卷积神经网络进行优化并进行训练;将小波动态融合声纹特征图谱导入至训练后的改进卷积神经网络中进行特征提取与识别,得到最终诊断结果;本发明通过将随机游走策略和柯西变异算子分别引入冠豪猪算法的第一种防御策略和第二种防御策略,可增强算法搜索的周密性,消除局部最优解的消极影响。
-
公开(公告)号:CN119249211A
公开(公告)日:2025-01-03
申请号:CN202411774478.X
申请日:2024-12-05
Applicant: 南昌工程学院
Abstract: 本发明公开了基于全频段多模态数据融合的配电变压器故障诊断方法,包括如下步骤:收集变压器的不同特征图;对收集的不同特征图进行特征提取并加权求和,得到多源融合特征向量;对多源融合特征向量进行数据预处理,数据预处理后再进行归一化处理;使用归一化处理后的多源融合特征训练改进概率神经网络;采用改进北极海鹦优化算法对训练好的改进概率神经网络的多项式阶数进行优化;采用优化后的改进概率神经网络进行变压器故障诊断;本发明采用改进北极海鹦优化算法通过模拟北极海鹦的觅食行为,有效结合全局搜索和局部搜索策略优化了改进概率神经网络的多项式阶数,提高了变压器数据融合诊断的准确率和概率神经网络的泛化能力。
-
公开(公告)号:CN119441743A
公开(公告)日:2025-02-14
申请号:CN202510028699.0
申请日:2025-01-08
IPC: G06F18/10 , G06N3/006 , G06F18/2131
Abstract: 本发明公开了一种变压器声纹信号去噪方法,包括如下步骤:使用声音采集装置采集变压器声纹信号;采用改进山猫优化算法对时变滤波经验模态分解的带宽阈值和B样条阶数进行优化,再使用优化后的时变滤波经验模态分解将采集到的变压器声纹信号分解成本征模态函数;采用滑动窗对本征模态函数进行分段截取,并且将截取后的本征模态函数构建成三阶信号张量;将构建的三阶信号张量输入贝叶斯高斯张量分解模型中进行分解重构,再根据张量构造逆过程将重构后的三阶信号张量还原成一维向量;本发明运用改进后的山猫优化算法优化时变滤波经验模态分解的参数,避免了分解时的混叠现象。
-
公开(公告)号:CN119106338A
公开(公告)日:2024-12-10
申请号:CN202411595325.9
申请日:2024-11-11
Applicant: 南昌工程学院
IPC: G06F18/241 , G06F18/214 , G06F18/25 , G06N3/0464 , G06N3/044 , G06N3/006 , G01H17/00 , G06F123/02
Abstract: 本发明公开了一种变压器铁芯松动故障声纹诊断方法,包括如下步骤:利用小波变换将采集到的声纹时序数据转换成声纹特征图谱;建立基于熵权法的传感器动态响应数据融合算法,并根据声纹时序数据的相对重要程度对声纹特征图谱实时融合,得到小波动态融合声纹特征图谱;采用改进冠豪猪优化算法对改进的卷积神经网络进行优化并进行训练;将小波动态融合声纹特征图谱导入至训练后的改进卷积神经网络中进行特征提取与识别,得到最终诊断结果;本发明通过将随机游走策略和柯西变异算子分别引入冠豪猪算法的第一种防御策略和第二种防御策略,可增强算法搜索的周密性,消除局部最优解的消极影响。
-
公开(公告)号:CN119380755A
公开(公告)日:2025-01-28
申请号:CN202411962793.5
申请日:2024-12-30
Applicant: 南昌工程学院
IPC: G10L25/51 , G10L25/03 , G10L25/30 , G06F18/23213 , G06F18/2337 , G06N3/04 , G06N3/0499 , G06N3/084 , G06N3/086 , G01R31/12
Abstract: 本发明公开了一种基于改进神经网络的变压器故障诊断方法,该方法针对传统变压器故障诊断存在的效率低下和诊断结果主观性强的问题,提出了一种基于改进算法的故障诊断技术。首先对变压器声纹数据进行预处理,通过模糊聚类C均值聚类算法进一步处理预处理后的声纹特征,对声纹特征进行标注并以此获取数据集。接着构建基于改进河马算法优化的神经网络模型,通过河马算法优化神经网络的参数,提高模型的搜索和收敛性能。本发明不仅提升了故障诊断的效率和准确性,还增强了模型的泛化能力,为变压器的维护和故障预防提供了有力的技术支持。
-
公开(公告)号:CN119249134A
公开(公告)日:2025-01-03
申请号:CN202411784302.2
申请日:2024-12-06
Applicant: 国网江西省电力有限公司电力科学研究院 , 南昌工程学院 , 南昌科晨电力试验研究有限公司
IPC: G06F18/213 , G06F18/24 , G06F18/25 , G06N3/0442 , G06N3/0464 , G01R31/327 , G01D21/02
Abstract: 本发明公开了一种基于多源信息融合声纹信号的开关放电检测方法及系统,方法包括:获取敞式开关的多源数据;对所述声振信号进行预处理,得到声振重构信号,并根据优化后的MCKD算法对所述声振重构信号进行特征提取,得到声振重构信号特征;构建CNN‑LSTM故障辨识模型,并引入注意力机制,将所述声振重构信号特征结合所述电压数据、所述电流数据和所述温度数据输入CNN‑LSTM故障辨识模型中进行特征分类,使用softmax激活函数根据分类后的特征得到故障类型。通过结合卷积神经网络和长短基记忆网络的各自特点,有效的提取声纹信号中存在的缺陷信息,达到对敞式开关状态的准确诊断。
-
-
-
-
-
-
-
-
-