-
公开(公告)号:CN116540261B
公开(公告)日:2024-11-12
申请号:CN202310511886.5
申请日:2023-05-08
Applicant: 南京邮电大学
Abstract: 本发明属于激光雷达技术领域,具体提出了一种改进的时间关联单光子三维成像方法。本发明方法相较于传统的单光子三维成像方法,在深度估计方面同时使用上升沿估计方法,从而使成像结果表现出更强的稳定性和鲁棒性,主要包括以下步骤:步骤1,使用时间相关单光子计数激光雷达系统对待测物体在X‑Y两维平面内进行扫描,获取扫描平面内每个像素的光子计数的直方图;步骤2,根据获取的光子计数直方图拟合出仪器响应函数的曲线;步骤3,根据拟合出仪器响应函数的曲线,计算出每个像素的最佳深度估计位置,并据此计算每个像素的以距离为单位的深度,恢复出深度图。
-
公开(公告)号:CN116540261A
公开(公告)日:2023-08-04
申请号:CN202310511886.5
申请日:2023-05-08
Applicant: 南京邮电大学
Abstract: 本发明属于激光雷达技术领域,具体提出了一种改进的时间关联单光子三维成像方法。本发明方法相较于传统的单光子三维成像方法,在深度估计方面同时使用上升沿估计方法,从而使成像结果表现出更强的稳定性和鲁棒性,主要包括以下步骤:步骤1,使用时间相关单光子计数激光雷达系统对待测物体在X‑Y两维平面内进行扫描,获取扫描平面内每个像素的光子计数的直方图;步骤2,根据获取的光子计数直方图拟合出仪器响应函数的曲线;步骤3,根据拟合出仪器响应函数的曲线,计算出每个像素的最佳深度估计位置,并据此计算每个像素的以距离为单位的深度,恢复出深度图。
-
公开(公告)号:CN115508860A
公开(公告)日:2022-12-23
申请号:CN202211223136.X
申请日:2022-10-08
Applicant: 南京邮电大学
IPC: G01S17/894 , G01S7/481 , G01S7/487 , G06T17/00
Abstract: 本发明属于激光雷达技术领域,具体公开了一种自适应扫描的三维成像方法。本发明采用自适应扫描的方法解决了大背景情况下激光雷达采集时间过长的问题,采用创新的正则化去噪模型实行三维重建,得到了较好的深度图。主要包括以下步骤:步骤1、采用可调光斑大小激光雷达实现预扫描和光斑先验;步骤2、生成空间模糊核和扫描区域矩阵;步骤3、根据扫描矩阵确定具体的扫描区域进行单光子数据采集;步骤4、构建正则化去噪最优化函数模型;步骤5、将实验数据经过正则化去噪实现三维重建,恢复出深度图。
-
公开(公告)号:CN113238424B
公开(公告)日:2022-04-15
申请号:CN202110453129.8
申请日:2021-04-26
Applicant: 南京邮电大学
Abstract: 本发明公开了一种新型的量子态层析方法,涉及量子计算、量子通信以及量子测量技术领域,可以大大降低现有方法中对测量仪器的要求。利用自发参量下转换制备双光子源,通过Hong.Ou.Mandel干涉构建联合测量算符以实现对双光子的联合测量。双光子由一个待重构量子态与一个辅助态构成,只需制备一组信息完备的可信辅助态以及提供一个测量算符即可实现对未知态的重构,实现了半设备无关的量子态层析。同时,本发明此可以扩展到量子过程层析等其他量子信息处理领域。
-
公开(公告)号:CN113238424A
公开(公告)日:2021-08-10
申请号:CN202110453129.8
申请日:2021-04-26
Applicant: 南京邮电大学
Abstract: 本发明公开了一种新型的量子态层析方法,涉及量子计算、量子通信以及量子测量技术领域,可以大大降低现有方法中对测量仪器的要求。利用自发参量下转换制备双光子源,通过Hong.Ou.Mandel干涉构建联合测量算符以实现对双光子的联合测量。双光子由一个待重构量子态与一个辅助态构成,只需制备一组信息完备的可信辅助态以及提供一个测量算符即可实现对未知态的重构,实现了半设备无关的量子态层析。同时,本发明此可以扩展到量子过程层析等其他量子信息处理领域。
-
公开(公告)号:CN115508860B
公开(公告)日:2025-01-14
申请号:CN202211223136.X
申请日:2022-10-08
Applicant: 南京邮电大学
IPC: G01S17/894 , G01S7/481 , G01S7/487 , G06T17/00
Abstract: 本发明属于激光雷达技术领域,具体公开了一种自适应扫描的三维成像方法。本发明采用自适应扫描的方法解决了大背景情况下激光雷达采集时间过长的问题,采用创新的正则化去噪模型实行三维重建,得到了较好的深度图。主要包括以下步骤:步骤1、采用可调光斑大小激光雷达实现预扫描和光斑先验;步骤2、生成空间模糊核和扫描区域矩阵;步骤3、根据扫描矩阵确定具体的扫描区域进行单光子数据采集;步骤4、构建正则化去噪最优化函数模型;步骤5、将实验数据经过正则化去噪实现三维重建,恢复出深度图。
-
-
-
-
-