-
公开(公告)号:CN110365473A
公开(公告)日:2019-10-22
申请号:CN201910469672.X
申请日:2019-05-31
Applicant: 南京邮电大学
Abstract: 一种基于机器学习的量子通信系统的主动反馈控制方法,在量子密钥分发系统的传输过程中,本发明利用已预先训练完成的双层LSTM网络,根据外界环境中实时温度、湿度、激光器光强起伏,以及过去时刻的电压变化预测下一时刻接收端的相位调制器的零相位电压值,并通过固定时间间隔对网络进行更新,使该LSTM网络能够长时间准确预测,从而保证量子密钥分发系统长时间高效稳定运行。本发明通过主动预测、反馈控制的方法,极大地提高了量子密钥分发系统的传输效率。本发明不仅限于应用在量子密钥分发系统或相位编码系统之中,也同样适用于基于其他编码方式的量子密钥分发系统或量子通信网络之中。
-
公开(公告)号:CN110365473B
公开(公告)日:2021-11-26
申请号:CN201910469672.X
申请日:2019-05-31
Applicant: 南京邮电大学
Abstract: 一种基于机器学习的量子通信系统的主动反馈控制方法,在量子密钥分发系统的传输过程中,本发明利用已预先训练完成的双层LSTM网络,根据外界环境中实时温度、湿度、激光器光强起伏,以及过去时刻的电压变化预测下一时刻接收端的相位调制器的零相位电压值,并通过固定时间间隔对网络进行更新,使该LSTM网络能够长时间准确预测,从而保证量子密钥分发系统长时间高效稳定运行。本发明通过主动预测、反馈控制的方法,极大地提高了量子密钥分发系统的传输效率。本发明不仅限于应用在量子密钥分发系统或相位编码系统之中,也同样适用于基于其他编码方式的量子密钥分发系统或量子通信网络之中。
-
公开(公告)号:CN104616299B
公开(公告)日:2019-02-19
申请号:CN201510051773.7
申请日:2015-01-30
Applicant: 南京邮电大学
IPC: G06T7/00
Abstract: 本发明公开了一种基于空时偏微分方程的弱小目标检测方法,该方法包括:(1)读入待处理图像序列的相邻三帧图像;(2)初始化参数w并计算图像的空时梯度(3)利用空时偏微分方程对图像进行背景预测;(4)对当前帧的图像和背景预测的结果进行差分,得到弱小目标的检测结果。本发明通过利用空时偏微分方程模型对远距离红外图像进行背景预测,使得算法能够对弱小目标进行检测,该方法为成像制导、安全监控、空间监测等方面提供了技术支撑,具有较强的实用价值。
-
公开(公告)号:CN104616299A
公开(公告)日:2015-05-13
申请号:CN201510051773.7
申请日:2015-01-30
Applicant: 南京邮电大学
IPC: G06T7/00
CPC classification number: G06T7/001 , G06T2207/10048 , G06T2207/20182
Abstract: 本发明公开了一种基于空时偏微分方程的弱小目标检测方法,该方法包括:(1)读入待处理图像序列的相邻三帧图像;(2)初始化参数w并计算图像的空时梯度(3)利用空时偏微分方程对图像进行背景预测;(4)对当前帧的图像和背景预测的结果进行差分,得到弱小目标的检测结果。本发明通过利用空时偏微分方程模型对远距离红外图像进行背景预测,使得算法能够对弱小目标进行检测,该方法为成像制导、安全监控、空间监测等方面提供了技术支撑,具有较强的实用价值。
-
-
-