-
公开(公告)号:CN108921872B
公开(公告)日:2022-02-01
申请号:CN201810463293.5
申请日:2018-05-15
Applicant: 南京理工大学
IPC: G06T7/246 , G06V10/764 , G06K9/62
Abstract: 本发明公开了一种适用于长程跟踪的鲁棒性视觉目标跟踪方法,首先根据视频序列的初始帧图像与目标在初始帧中的位置信息提取正负样本,对样本图像块作特征提取得到低维特征向量,使用线性支持向量机技术初始化目标外观模型;然后对得到的支持向量机模型进行逻辑斯蒂回归,对目标外观模型在粒子滤波框架下估计目标位置;随后,将中值流跟踪算法与当前的粒子滤波算法结合协同跟踪,在跟踪过程中采用增量减量技术在线更新外观模型,将原始的外观模型与新样本结合在线更新外观模型,直到最后一帧结束更新,从而实现了鲁棒性的视觉目标跟踪。本发明实现了机制迥异的两路跟踪方法的并行互补,解决了跟踪进程中不断产生新信息而造成空间冗余的问题。
-
公开(公告)号:CN108921872A
公开(公告)日:2018-11-30
申请号:CN201810463293.5
申请日:2018-05-15
Applicant: 南京理工大学
Abstract: 本发明公开了一种适用于长程跟踪的鲁棒性视觉目标跟踪方法,首先根据视频序列的初始帧图像与目标在初始帧中的位置信息提取正负样本,对样本图像块作特征提取得到低维特征向量,使用线性支持向量机技术初始化目标外观模型;然后对得到的支持向量机模型进行逻辑斯蒂回归,对目标外观模型在粒子滤波框架下估计目标位置;随后,将中值流跟踪算法与当前的粒子滤波算法结合协同跟踪,在跟踪过程中采用增量减量技术在线更新外观模型,将原始的外观模型与新样本结合在线更新外观模型,直到最后一帧结束更新,从而实现了鲁棒性的视觉目标跟踪。本发明实现了机制迥异的两路跟踪方法的并行互补,解决了跟踪进程中不断产生新信息而造成空间冗余的问题。
-