一种改进的平均一致性算法

    公开(公告)号:CN109842115A

    公开(公告)日:2019-06-04

    申请号:CN201910104183.4

    申请日:2019-02-01

    Abstract: 本发明公开了一种改进的平均一致性算法,首先构建改进平均一致性算法的迭代矩阵,选取待优化的收敛系数;然后读取电网的网络结构,建立分布式多代理系统模型;接着设置收敛系数集合,计算各收敛系数下算法的迭代次数;最后选取迭代次数最小的收敛系数作为最优收敛系数,以提高平均一致性算法的收敛速度。本发明通过选择最优收敛系数优化算法性能,提升了一致性算法的收敛速度,进而提高了信息交互速度和分布式控制的时效性。

    基于改进拟蒙特卡洛法的配电网风险评估方法

    公开(公告)号:CN110795691A

    公开(公告)日:2020-02-14

    申请号:CN201910787261.5

    申请日:2019-08-25

    Abstract: 本发明提供了一种基于改进拟蒙特卡洛法的配电网风险评估方法,包括:构造Halton低偏差序列并进行随机化;利用改进的Halton序列得到分布式电源出力和负荷样本;在各组样本点下进行确定性潮流计算,统计电压和潮流的概率分布情况;评估配电网的电压越限风险和潮流越限风险。本发明对拟蒙特卡洛法中的低偏差序列进行改进,并将其应用到含分布式电源的配电网风险评估中,计算了电压越限指标和潮流越限指标,显著提高了风险评估的准确性和高效性。

    基于模型预测控制的主动配电网动态虚拟集群划分方法

    公开(公告)号:CN111092428B

    公开(公告)日:2022-09-27

    申请号:CN201911262243.1

    申请日:2019-12-10

    Abstract: 本发明公开了一种基于模型预测控制的主动配电网动态虚拟集群划分方法,以滚动优化时间周期作为时间段划分依据,结合集群供电率约束和滚动优化目标函数,进行集群供电率约束校验、滚动优化,确定未来第一个滚动优化时间周期内的集群划分方案;以反馈校正时间周期作为时间段划分依据,结合反馈校正目标函数,在未来第一个滚动优化时间周期内对滚动优化得到的集群划分方案在每个反馈校正时间周期进行一次反馈校正,确定未来第一个滚动优化时间周期内每个反馈校正时间周期的集群划分方案;本发买明根据实时信息反馈构成动态的闭环集群划分优化,能有效跟踪系统实际工况变化,摆脱预测偏差与分布式能源波动对主动配电网分区控制的不利影响。

    基于场景分析的配电网运行风险评估方法

    公开(公告)号:CN110599006A

    公开(公告)日:2019-12-20

    申请号:CN201910787262.X

    申请日:2019-08-25

    Abstract: 本发明提供了一种基于场景分析的配电网运行风险评估方法,包括:对风电、光伏出力和负荷进行抽样,获得时序场景库;在各时刻场景下进行概率潮流计算,得到电压和潮流的概率分布;评估节点电压越限风险和线路潮流越限风险;统计各时刻的风险情况,得到时序风险分布。本发明考虑了风电、光伏出力的不确定性和负荷的波动性,准确地评估了配电网运行的时序风险,结果更能反映实际情况,并能为含风光能源的配电网风险预防控制提供依据。

    一种基于集成学习的交直流配电网负荷预测方法

    公开(公告)号:CN110707763B

    公开(公告)日:2022-09-06

    申请号:CN201910990050.1

    申请日:2019-10-17

    Abstract: 本发明公开了一种基于集成学习的交直流配电网负荷预测方法,对原始负荷数据进行负荷数据填充和归一化,利用滑动时间窗口采样负荷样本输入向量和样本标签,构造训练数据集;建立梯度提升模型,设置弱学习器个数,建立多个浅层神经网络来拟合梯度提升算法的负梯度,得到组合预测模型;利用滑动时间窗口选取待预测时间点前的负荷向量作为输入向量,结合集成学习模型,确定负荷预测值。本发明通过融合多个模型的强学习器进行负荷预测,提高了负荷预测的精度。

    基于NARX神经网络的交直流电网自治能力评估方法

    公开(公告)号:CN110766301B

    公开(公告)日:2022-08-16

    申请号:CN201910970200.2

    申请日:2019-10-12

    Abstract: 本发明提供了一种基于NARX神经网络的交直流电网自治能力评估方法,从源网荷储角度,提取训练交直流电网数据的分项评估指标;根据分项评估指标,确定原始评价矩阵及参考数列;使用熵值法,确定各分项评估指标的客观权重;根据原始评价矩阵、参考数列和客观权重,确定训练电网数据的综合灰关联度;根据分项评估指标和综合灰关联度,训练NARX神经网络的评估模型;基于训练的NARX神经网络的评估模型,评估交直流电网自治能力等级。本发明比传统方法选取的指标特征更具全局性,评估精度更高。

    基于场景分析的配电网运行风险评估方法

    公开(公告)号:CN110599006B

    公开(公告)日:2022-08-12

    申请号:CN201910787262.X

    申请日:2019-08-25

    Abstract: 本发明提供了一种基于场景分析的配电网运行风险评估方法,包括:对风电、光伏出力和负荷进行抽样,获得时序场景库;在各时刻场景下进行概率潮流计算,得到电压和潮流的概率分布;评估节点电压越限风险和线路潮流越限风险;统计各时刻的风险情况,得到时序风险分布。本发明考虑了风电、光伏出力的不确定性和负荷的波动性,准确地评估了配电网运行的时序风险,结果更能反映实际情况,并能为含风光能源的配电网风险预防控制提供依据。

    一种风光联合出力时序场景的生成方法

    公开(公告)号:CN110311420A

    公开(公告)日:2019-10-08

    申请号:CN201910589567.X

    申请日:2019-06-29

    Abstract: 本发明公开了一种风光联合出力时序场景的生成方法,包括:建立考虑相关性的风电、光伏联合概率分布模型;生成风电、光伏出力的随机数矩阵;利用改进的拉丁超立方抽样法进行抽样,得到随机数样本矩阵;根据样本值的反函数得到风电、光伏出力样本;采用乔莱斯基分解法得到时序出力场景;对时序场景进行削减以确定最佳的场景组合。本发明考虑风电、光伏出力的随机性和风光之间的相关性,实现了风光联合出力时序场景的生成和削减,能更准确地描述风电、光伏的实际出力特征。

    计及系统频率和电压特性的自适应切负荷方法

    公开(公告)号:CN110165679A

    公开(公告)日:2019-08-23

    申请号:CN201910431497.5

    申请日:2019-05-22

    Abstract: 本发明提供了一种紧急情况下计及系统频率和电压特性的自适应切负荷方法,计算系统紧急情况下的不平衡功率;确定切负荷动作轮次和各轮次的动作频率值、动作时延、切负荷量;根据母线电压灵敏度确定切负荷地点,分配切负荷量;根据负荷重要性和频率变化率,选择切除负荷。本发明根据系统紧急情况下的频率、电压特性动态整定功率缺额,根据母线电压灵敏度动态分配各负荷节点的切负荷量,比传统离线整定切负荷量方法的自适应性及切负荷的准确性更高,避免了系统出现过切的情况,提高了系统运行的经济性。

    基于改进拟蒙特卡洛法的配电网风险评估方法

    公开(公告)号:CN110795691B

    公开(公告)日:2023-06-13

    申请号:CN201910787261.5

    申请日:2019-08-25

    Abstract: 本发明提供了一种基于改进拟蒙特卡洛法的配电网风险评估方法,包括:构造Halton低偏差序列并进行随机化;利用改进的Halton序列得到分布式电源出力和负荷样本;在各组样本点下进行确定性潮流计算,统计电压和潮流的概率分布情况;评估配电网的电压越限风险和潮流越限风险。本发明对拟蒙特卡洛法中的低偏差序列进行改进,并将其应用到含分布式电源的配电网风险评估中,计算了电压越限指标和潮流越限指标,显著提高了风险评估的准确性和高效性。

Patent Agency Ranking