基于局部误差逐层训练的人体姿态识别方法和装置

    公开(公告)号:CN111178288B

    公开(公告)日:2024-03-01

    申请号:CN201911411314.X

    申请日:2019-12-31

    Abstract: 本发明公开了一种基于局部误差逐层训练的人体姿态识别方法和装置,所述方法包括:S1、获取人体姿态数据,进行降噪、归一化处理;S2、将处理后数据送入卷积神经网络模型进行逐层训练,对人体姿态进行分类识别,当识别结果符合准确率要求时,输出模型;S3、利用训练好的模型对待识别的人体姿态数据进行分类识别。本发明摆脱了传统卷积神经网络依赖全局误差及反向传播更新网络参数,通过在每层神经网络中构建代价函数,实现逐层反向传播、层层优化、分批更新权重参数。通过避免保存全局梯度流参数实现节省计算机资源,并极大加快训练周期,提高了可穿戴传感器识别精度,在运动辅助、智能家居、医疗康复、虚拟运动场景等领域具有重要应用意义。

    基于局部误差逐层训练的人体姿态识别方法和装置

    公开(公告)号:CN111178288A

    公开(公告)日:2020-05-19

    申请号:CN201911411314.X

    申请日:2019-12-31

    Abstract: 本发明公开了一种基于局部误差逐层训练的人体姿态识别方法和装置,所述方法包括:S1、获取人体姿态数据,进行降噪、归一化处理;S2、将处理后数据送入卷积神经网络模型进行逐层训练,对人体姿态进行分类识别,当识别结果符合准确率要求时,输出模型;S3、利用训练好的模型对待识别的人体姿态数据进行分类识别。本发明摆脱了传统卷积神经网络依赖全局误差及反向传播更新网络参数,通过在每层神经网络中构建代价函数,实现逐层反向传播、层层优化、分批更新权重参数。通过避免保存全局梯度流参数实现节省计算机资源,并极大加快训练周期,提高了可穿戴传感器识别精度,在运动辅助、智能家居、医疗康复、虚拟运动场景等领域具有重要应用意义。

    一种基于信道选择卷积神经网络的人体姿态识别方法

    公开(公告)号:CN111860191A

    公开(公告)日:2020-10-30

    申请号:CN202010589470.1

    申请日:2020-06-24

    Abstract: 本发明公开了一种基于信道选择卷积神经网络的人体姿态识别方法,包括:利用移动设备采集人体动作的原始数据,附上动作的标签、利用滑窗和归一化处理并切分为训练样本集和测试样本集、建立基于信道选择卷积神经网络模型,与常规神经网络相比,引入了信道选择卷积核策略,首先是对输入样本利用期望通道损失矩阵判断通道的权重,然后再对权重低的通道进行阻断,权重高的通道进行重分配,为了防止多样性的缺失,在重分配后加入了空间位移经过多层训练后,进行姿态识别。由于空间位移的作用,空间偏置会向中间聚集,所以卷积核相当于被扩大,所以当样本输入时,参数可以被更好的利用,并且保持参数量不变,本发明具有识别精准。

Patent Agency Ranking