基于局部误差逐层训练的人体姿态识别方法和装置

    公开(公告)号:CN111178288A

    公开(公告)日:2020-05-19

    申请号:CN201911411314.X

    申请日:2019-12-31

    Abstract: 本发明公开了一种基于局部误差逐层训练的人体姿态识别方法和装置,所述方法包括:S1、获取人体姿态数据,进行降噪、归一化处理;S2、将处理后数据送入卷积神经网络模型进行逐层训练,对人体姿态进行分类识别,当识别结果符合准确率要求时,输出模型;S3、利用训练好的模型对待识别的人体姿态数据进行分类识别。本发明摆脱了传统卷积神经网络依赖全局误差及反向传播更新网络参数,通过在每层神经网络中构建代价函数,实现逐层反向传播、层层优化、分批更新权重参数。通过避免保存全局梯度流参数实现节省计算机资源,并极大加快训练周期,提高了可穿戴传感器识别精度,在运动辅助、智能家居、医疗康复、虚拟运动场景等领域具有重要应用意义。

    基于循环注意力网络的人体动作识别方法及识别装置

    公开(公告)号:CN111199202B

    公开(公告)日:2024-04-26

    申请号:CN201911390481.0

    申请日:2019-12-30

    Abstract: 本发明公开了一种基于循环注意力网络的人体动作识别方法及识别装置。所述方法包括以下步骤:S1:利用多轴传感器采集人体各类动作数据;S2:将数据分割为包含多种动作类别的长时间序列段,并给序列段附上序列标签;S3:将处理后的数据输入预先构建的多层的循环注意力神经网络模型,实现特定类别动作的识别。本发明利用循环注意力算法,可以实现传感器数据的自动定位识别与切割,可大大减少传感器数据人为标注所耗费的人力物力。

    基于局部误差逐层训练的人体姿态识别方法和装置

    公开(公告)号:CN111178288B

    公开(公告)日:2024-03-01

    申请号:CN201911411314.X

    申请日:2019-12-31

    Abstract: 本发明公开了一种基于局部误差逐层训练的人体姿态识别方法和装置,所述方法包括:S1、获取人体姿态数据,进行降噪、归一化处理;S2、将处理后数据送入卷积神经网络模型进行逐层训练,对人体姿态进行分类识别,当识别结果符合准确率要求时,输出模型;S3、利用训练好的模型对待识别的人体姿态数据进行分类识别。本发明摆脱了传统卷积神经网络依赖全局误差及反向传播更新网络参数,通过在每层神经网络中构建代价函数,实现逐层反向传播、层层优化、分批更新权重参数。通过避免保存全局梯度流参数实现节省计算机资源,并极大加快训练周期,提高了可穿戴传感器识别精度,在运动辅助、智能家居、医疗康复、虚拟运动场景等领域具有重要应用意义。

    基于循环注意力网络的人体动作识别方法及识别装置

    公开(公告)号:CN111199202A

    公开(公告)日:2020-05-26

    申请号:CN201911390481.0

    申请日:2019-12-30

    Abstract: 本发明公开了一种基于循环注意力网络的人体动作识别方法及识别装置。所述方法包括以下步骤:S1:利用多轴传感器采集人体各类动作数据;S2:将数据分割为包含多种动作类别的长时间序列段,并给序列段附上序列标签;S3:将处理后的数据输入预先构建的多层的循环注意力神经网络模型,实现特定类别动作的识别。本发明利用循环注意力算法,可以实现传感器数据的自动定位识别与切割,可大大减少传感器数据人为标注所耗费的人力物力。

Patent Agency Ranking