一种基于ReliefF-DDC特征选择算法

    公开(公告)号:CN111898637B

    公开(公告)日:2022-09-02

    申请号:CN202010597594.4

    申请日:2020-06-28

    Abstract: 本发明具体涉及一种基于ReliefF‑DDC特征选择算法,包括S1、获取训练集样本,确定算法各参数值:S2、将所有特征权重置0,置、为空集;S3、从训练集中选取样本并更新其包含的所有维度的特征的权重,利用ReliefF计算特征与各类别之间的相关性来确定“重要特征”,排除无关特征;S4、输出中大于阈值时对应的特征向量,按降序排列添加至集合;S5、利用DDC算法,根据特征之间与决策变量的相关性分析去除冗余特征;S6、得到最佳特征子集,将所选特征用于非侵入式负荷识别。本方法有效降低特征维数,提高负荷识别率并缩短算法运行时间。

    一种基于分数阶Hilbert倒谱的特征提取方法

    公开(公告)号:CN111401204A

    公开(公告)日:2020-07-10

    申请号:CN202010166102.6

    申请日:2020-03-11

    Abstract: 本发明具体涉及一种基于分数阶Hilbert倒谱的特征提取方法,包括S1、采集不同用电负荷单独运行时的电流数据;S2、对采集到的电流数据分别进行加窗预处理;S3、对处理后的电流数据分别进行分数阶Hilbert变换,将数据映射到分数空间;S4、对分数阶Hilbert变换阶数进行寻优,确定最优阶数;S5、在最优阶数下,计算得到不同用电负荷的倒谱特征;S6、将不同用电负荷在最优阶数下的分数阶倒谱特征代入支持向量机中进行负荷识别,得到不同用电负荷的识别率。本发明提出的分数阶倒谱特征有效的提高了不同用电负荷识别率,并且在负荷特征近似的情况下有较好的分类效果。

    一种基于分数阶Hilbert倒谱的特征提取方法

    公开(公告)号:CN111401204B

    公开(公告)日:2022-07-26

    申请号:CN202010166102.6

    申请日:2020-03-11

    Abstract: 本发明具体涉及一种基于分数阶Hilbert倒谱的特征提取方法,包括S1、采集不同用电负荷单独运行时的电流数据;S2、对采集到的电流数据分别进行加窗预处理;S3、对处理后的电流数据分别进行分数阶Hilbert变换,将数据映射到分数空间;S4、对分数阶Hilbert变换阶数进行寻优,确定最优阶数;S5、在最优阶数下,计算得到不同用电负荷的倒谱特征;S6、将不同用电负荷在最优阶数下的分数阶倒谱特征代入支持向量机中进行负荷识别,得到不同用电负荷的识别率。本发明提出的分数阶倒谱特征有效的提高了不同用电负荷识别率,并且在负荷特征近似的情况下有较好的分类效果。

    一种基于ReliefF-DDC特征选择算法

    公开(公告)号:CN111898637A

    公开(公告)日:2020-11-06

    申请号:CN202010597594.4

    申请日:2020-06-28

    Abstract: 本发明具体涉及一种基于ReliefF-DDC特征选择算法,包括S1、获取训练集样本,确定算法各参数值:S2、将所有特征权重置0,置、为空集;S3、从训练集中选取样本并更新其包含的所有维度的特征的权重,利用ReliefF计算特征与各类别之间的相关性来确定“重要特征”,排除无关特征;S4、输出中大于阈值时对应的特征向量,按降序排列添加至集合;S5、利用DDC算法,根据特征之间与决策变量的相关性分析去除冗余特征;S6、得到最佳特征子集,将所选特征用于非侵入式负荷识别。本方法有效降低特征维数,提高负荷识别率并缩短算法运行时间。

Patent Agency Ranking