一种基于LSTM和自注意力的碳排放预测方法和系统

    公开(公告)号:CN119539140A

    公开(公告)日:2025-02-28

    申请号:CN202411403789.5

    申请日:2024-10-09

    Abstract: 本发明提供一种基于LSTM和自注意力的碳排放预测方法和系统,预测模型训练方法为:获取训练样本集,将训练样本输入初始碳排放预测模型,该模型包括长短时记忆层、自注意力层和线性层。利用长短时记忆层提取并输出每个影响因素对应的有效关键信息,将每个影响因素对应的有效关键信息输入至自注意力层,输出每个影响因素与其自身之外其他影响因素之间的关联信息。将每个影响因素对应的关联信息进行整合并输入线性层,输出碳排放预测结果。基于预测结果与真实标签的差距构建损失函数,最小化损失以更新模型参数直至达到预设训练轮数,获得训练后的碳排放预测模型。本发明综合考虑多种因素,捕捉数据序列的长期依赖关系,实现更准确的碳排放预测。

    分层联邦学习系统的资源分配及聚合优化方法及装置

    公开(公告)号:CN117076132B

    公开(公告)日:2024-01-05

    申请号:CN202311320639.3

    申请日:2023-10-12

    Abstract: 本申请提供一种分层联邦学习系统的资源分配及聚合优化方法及装置,涉及机器学习领域,方法包括:根据分层联邦学习系统中的各个边缘服务器各自的域内训练时间及传输延时信息,确定当前迭代轮次的提交时间区间;将全局模型参数和提交时间区间发送至各个边缘服务器,以使各个边缘服务器分别为自身分组中的各个终端分配针对当前迭代轮次的全局模型参数的目标计算任务并同步聚合各个子模型参数,对提交时间区间内接收到的边缘聚合结果数据进行云聚合。本申请能够有效降低分层联邦学习系统的计算复杂度,尤其适用于物联网等大量终端构成的分层联邦学习系统的场景,还能够提高终端和边缘服务器的计算资源利用率,进而能够有

    分层联邦学习系统的资源分配及聚合优化方法及装置

    公开(公告)号:CN117076132A

    公开(公告)日:2023-11-17

    申请号:CN202311320639.3

    申请日:2023-10-12

    Abstract: 本申请提供一种分层联邦学习系统的资源分配及聚合优化方法及装置,涉及机器学习领域,方法包括:根据分层联邦学习系统中的各个边缘服务器各自的域内训练时间及传输延时信息,确定当前迭代轮次的提交时间区间;将全局模型参数和提交时间区间发送至各个边缘服务器,以使各个边缘服务器分别为自身分组中的各个终端分配针对当前迭代轮次的全局模型参数的目标计算任务并同步聚合各个子模型参数,对提交时间区间内接收到的边缘聚合结果数据进行云聚合。本申请能够有效降低分层联邦学习系统的计算复杂度,尤其适用于物联网等大量终端构成的分层联邦学习系统的场景,还能够提高终端和边缘服务器的计算资源利用率,进而能够有效提高分层联邦学习的效率。

Patent Agency Ranking