-
公开(公告)号:CN113807040A
公开(公告)日:2021-12-17
申请号:CN202111112523.1
申请日:2021-09-23
Applicant: 北京邮电大学
IPC: G06F30/337 , G06F30/33 , G06F30/27 , G06N3/00 , G06N3/04 , G06N3/08 , G06F111/06
Abstract: 本发明公开了一种面向微波电路的优化设计方法,包括以下步骤:利用LHS获得样本模型设计参数,并利用Matlab‑HFSS联合仿真技术得到对应的样本响应;计算所有样本响应与目标响应的相关系数,选择相关系数最大的样本作为优化样本,其他样本作为训练样本;利用训练样本对ELM进行训练,预测优化样本响应的设计参数,并采用BSO优化ELM的输入权重和阈值;利用优化输入权重和阈值后的ELM建立微波电路模型设计参数与响应之间的映射关系,在训练过程中利用所有训练样本进行训练,在预测过程中预测目标响应对应的模型设计参数。本发明提高了神经网络的训练和预测质量,降低所需的训练样本数量及优化设计微波电路所需时间,实现微波电路优化设计自动化,提高优化设计效率。
-
公开(公告)号:CN113571859A
公开(公告)日:2021-10-29
申请号:CN202110834891.0
申请日:2021-07-23
Applicant: 北京邮电大学
Abstract: 本发明公开了一种基于腔体耦合的微带线‑微带线垂直过渡结构及其应用,该结构由上层介质基板、公共接地板和下层介质基板组成,所述上层介质基板和下层介质基板上分别带有微带线,所述微带线的末端分别贴有贴片,贴片的长度为传输波长的四分之一,贴片的宽度大于微带线的宽度,所述公共接地板上带有金属腔体,电磁信号能够通过公共接地板上的金属腔体耦合至上下层微带线。本发明通过添加贴片的方法降低了模型插入损耗,大大提升了传输带宽,可应用于三维高速微波电路中。
-
公开(公告)号:CN112886167A
公开(公告)日:2021-06-01
申请号:CN202110011198.3
申请日:2021-01-06
Applicant: 北京邮电大学
Abstract: 本公开实施例提供一种基于电磁耦合的微带线垂直过渡结构及微波集成系统。微带线垂直过渡结构包括:两个平行设置的介质基板;公共地板,位于两个介质基板之间且与两个介质基板层叠接触;两个矩形微带线,一个矩形微带线位于一个介质基板远离公共地板的一侧,另一矩形微带线位于另一介质基板远离公共地板的一侧;两个矩形末端贴片,一个矩形末端贴片与一个矩形微带线位于同一平面且相连,另一个矩形末端贴片与另一个矩形微带线位于同一平面且相连,一个矩形末端贴片与另一个矩形末端贴片在一个介质基板上的投影重叠;其中,公共地板具有开槽,一个矩形末端贴片与另一个矩形末端贴片在一个介质基板上的投影落入开槽在一个介质基板上的投影中。
-
公开(公告)号:CN111834720A
公开(公告)日:2020-10-27
申请号:CN202010661873.2
申请日:2020-07-10
Applicant: 北京邮电大学
Abstract: 本发明实施例提供了一种基于多枝节匹配的金丝键合结构和多芯片微波电路,其中,所述结构包括:第一、第二微带线和至少两根键合金丝;第一微带线包括第一介质基板和设置在第一介质基板上表面的第一传输线;第一传输线包括与源端匹配的微带;第二微带线包括第二介质基板和第二传输线;第二传输线包括微波网络和与负载端匹配的微带;微波网络的一端相连与负载端匹配的微带,另一端通过键合金丝与第一传输线相连;微波网络包括串联的多个微带,用于对键合金丝进行阻抗匹配。通过本方案可以解决高频传输过程中的信号传输质量较差的问题。
-
公开(公告)号:CN113807040B
公开(公告)日:2023-06-09
申请号:CN202111112523.1
申请日:2021-09-23
Applicant: 北京邮电大学
IPC: G06F30/337 , G06F30/33 , G06F30/27 , G06N3/006 , G06N3/0499 , G06N3/084 , G06F111/06
Abstract: 本发明公开了一种面向微波电路的优化设计方法,包括以下步骤:利用LHS获得样本模型设计参数,并利用Matlab‑HFSS联合仿真技术得到对应的样本响应;计算所有样本响应与目标响应的相关系数,选择相关系数最大的样本作为优化样本,其他样本作为训练样本;利用训练样本对ELM进行训练,预测优化样本响应的设计参数,并采用BSO优化ELM的输入权重和阈值;利用优化输入权重和阈值后的ELM建立微波电路模型设计参数与响应之间的映射关系,在训练过程中利用所有训练样本进行训练,在预测过程中预测目标响应对应的模型设计参数。本发明提高了神经网络的训练和预测质量,降低所需的训练样本数量及优化设计微波电路所需时间,实现微波电路优化设计自动化,提高优化设计效率。
-
公开(公告)号:CN114384632B
公开(公告)日:2023-03-14
申请号:CN202210056279.X
申请日:2022-01-18
Applicant: 北京邮电大学
Abstract: 本发明公开了一种基于阵列波导光栅和波导型探测器的模斑转换器,采用包括第一波导和第二波导的双台阶式波导结构,第一波导和第二波导均为反向锥形波导结构,其过渡方式均为抛物线型过渡;第一波导的大端面和第二波导的大端面对齐,第一波导的大端面为阵列波导光栅输出光的入射面,第二波导的小端面为出光面,原本被限制在第一波导芯层中的光耦合到第二波导的芯层中,从而缩小模场,使阵列波导光栅中的模场转换为波导型探测器脊形波导中的模场,实现阵列波导光栅与波导型探测器模场的匹配。本发明采用端面耦合的方式,将光场从侧面耦合进吸收区,减少光场在波导传播过程中的损耗与散射,进而增加了光耦合效率,便于光电探测器的集成应用。
-
公开(公告)号:CN113589429A
公开(公告)日:2021-11-02
申请号:CN202110844107.4
申请日:2021-07-26
Applicant: 北京邮电大学
IPC: G02B6/12
Abstract: 本发明公开了一种基于辅助波导的阵列波导光栅,包括输入信道波导、平板波导、阵列波导、输出信道波导,在阵列波导与其相邻的平板波导之间分别加入辅助波导,阵列波导数目范围为10~20,阵列波导间距do在5~10μm范围内取值,输入/输出波导间距di在5~12μm取值,衍射级数在8~20之间取值,所述辅助波导的长度L为300μm~500μm,输入端宽度Win=do‑width,输出端宽度Wout为0.1~3μm。本发明的阵列波导光栅,使光从平板波导进入阵列波导时更好地衍射,减少了由于模式失配所产生的损耗,降低了阵列波导光栅的插入损耗,并在一定程度上增加带宽,且不增加器件尺寸。
-
公开(公告)号:CN112433296A
公开(公告)日:2021-03-02
申请号:CN202011337073.1
申请日:2020-11-25
Applicant: 北京邮电大学
Abstract: 本公开实施例提供一种波导耦合结构及光子集成系统;其中,波导耦合结构包括:衬底;设于衬底一侧的包层,包括第一侧表面和第二侧表面;设于包层内的第二波导,包括前表面和后表面,后表面作为波导耦合结构的出光面;设于包层内的至少一个第一波导;每个第一波导包括传输段和耦合段;其中,传输段位于第二波导外且呈长方体状,传输段远离耦合段的端面与第一侧表面平齐并作为波导耦合结构的入光面;耦合段从第一侧面伸入第二波导内;沿垂直于第一侧表面方向,从入光面至出光面,耦合段的宽度递减;包层、第二波导和第一波导的折射率依次增大。通过本方案可以实现将激光器发出的光信号低损耗地耦合到平面光波导电路PLC中的硅基光芯片。
-
公开(公告)号:CN114966966B
公开(公告)日:2023-05-16
申请号:CN202210570365.2
申请日:2022-05-24
Applicant: 北京邮电大学
Abstract: 本发明公开了一种基于辅助波导的非线性锥形耦合器,包括一个耦合器主体和两个辅助波导,耦合器主体由五段宽度变化率不同的锥形波导组成,将该耦合器用于氮化硅单模波导与二氧化硅单模波导耦合,耦合效率可达92.3%,此外在耦合器主体的末端两侧对称地设置两个辅助波导,耦合效率可达96%以上,对准耦合误差容限超过1.3μm,相比于光栅耦合器具有耦合效率高、偏振损耗低、工作带宽大的优点;相比于传统倒锥形耦合器,通过应用非线性结构大大减少了耦合器尺寸,提高了器件的集成度,具有体积小、误差容限高的特点,可以应用在不同尺寸光器件集成中。
-
公开(公告)号:CN112886167B
公开(公告)日:2021-12-17
申请号:CN202110011198.3
申请日:2021-01-06
Applicant: 北京邮电大学
Abstract: 本公开实施例提供一种基于电磁耦合的微带线垂直过渡结构及微波集成系统。微带线垂直过渡结构包括:两个平行设置的介质基板;公共地板,位于两个介质基板之间且与两个介质基板层叠接触;两个矩形微带线,一个矩形微带线位于一个介质基板远离公共地板的一侧,另一矩形微带线位于另一介质基板远离公共地板的一侧;两个矩形末端贴片,一个矩形末端贴片与一个矩形微带线位于同一平面且相连,另一个矩形末端贴片与另一个矩形微带线位于同一平面且相连,一个矩形末端贴片与另一个矩形末端贴片在一个介质基板上的投影重叠;其中,公共地板具有开槽,一个矩形末端贴片与另一个矩形末端贴片在一个介质基板上的投影落入开槽在一个介质基板上的投影中。
-
-
-
-
-
-
-
-
-