-
公开(公告)号:CN117131784B
公开(公告)日:2024-02-23
申请号:CN202311361414.2
申请日:2023-10-20
Applicant: 北京航空航天大学 , 北京空间飞行器总体设计部
IPC: G06F30/27 , G06N3/048 , G06F119/14 , G06F119/02
Abstract: 本公开的实施例提供了一种基于全局代理优化的加速退化试验设计方法和装置。属于可靠性工程领域,所述方法包括:基于产品性能退化历史数据建立产品的加速性能退化模型;确定试验设计变量,结合产品的加速性能退化建模及可靠性分析,构建优化目标函数和约束条件,从而建立优化模型;基于径向基神经网络构建代理模型,结合遗传算法对优化模型中的试验设计变量进行全局寻优得到优化设计结果。以此方式,可以快速得到航空飞行器产品的加速退化试验最优的试验方案,基于此试验方案开展试验可以获取最丰富的产品寿命信息,从而在一定的试验资源约束下实现产品寿命评估精度的有效提升。
-
公开(公告)号:CN117131784A
公开(公告)日:2023-11-28
申请号:CN202311361414.2
申请日:2023-10-20
Applicant: 北京航空航天大学 , 北京空间飞行器总体设计部
IPC: G06F30/27 , G06N3/048 , G06F119/14 , G06F119/02
Abstract: 本公开的实施例提供了一种基于全局代理优化的加速退化试验设计方法和装置。属于可靠性工程领域,所述方法包括:基于产品性能退化历史数据建立产品的加速性能退化模型;确定试验设计变量,结合产品的加速性能退化建模及可靠性分析,构建优化目标函数和约束条件,从而建立优化模型;基于径向基神经网络构建代理模型,结合遗传算法对优化模型中的试验设计变量进行全局寻优得到优化设计结果。以此方式,可以快速得到航空飞行器产品的加速退化试验最优的试验方案,基于此试验方案开展试验可以获取最丰富的产品寿命信息,从而在一定的试验资源约束下实现产品寿命评估精度的有效提升。
-
公开(公告)号:CN115981265B
公开(公告)日:2024-08-02
申请号:CN202210796267.0
申请日:2022-07-06
Applicant: 北京航空航天大学
IPC: G05B23/02
Abstract: 本发明公开了一种基于扩张观测器的舰载机故障在线检测方法,通过推导舰载机纵向和横航向线化小扰动方程,建立系统的扩张状态观测器,使得舰载机在发生系统故障时,仍然提供可靠的状态估计,并通过状态量的阈值限制在线检测关键故障。该方法相较于现有的基于数据和基于智能算法的故障检测方法,时效性更强,可以在线检测故障和报警,同时算法更简单稳定;相较于传统状态观测器,扩张观测器对于非线性和时变的系统仍然是有效的,同时可靠的状态估计使得飞控系统具有一定的容错性。
-
公开(公告)号:CN116187108A
公开(公告)日:2023-05-30
申请号:CN202310470176.2
申请日:2023-04-27
Applicant: 北京航空航天大学 , 中国航空工业集团公司沈阳飞机设计研究所
IPC: G06F30/20 , G06Q10/1093 , G06F119/02 , G06F111/08 , G06F119/12
Abstract: 本公开提供了一种舰载机着舰任务的可靠性分配方法和装置,涉及舰载机着舰技术领域,方法包括:根据舰载机自动着舰过程任务剖面,对舰载机自动着舰任务进行阶段划分,将舰载机自动着舰任务划分为多个分阶段任务;对各分阶段任务进行评分,利用D‑S证据理论处理评分结果,将舰载机自动着舰任务的任务可靠度分配到各个分阶段任务;根据分阶段任务的剖面特性,建立分阶段任务的可靠性框图;融合主客观信息,确定各子系统在分阶段任务的分配系数;根据各子系统在各个分阶段任务的分配系数和各子系统对应的分阶段任务的可靠性确定各个子系统在舰载机自动着舰任务中的可靠度。以此方式,能够准确确定舰载机着舰控制系统的子系统的可靠度指标。
-
公开(公告)号:CN111967168A
公开(公告)日:2020-11-20
申请号:CN202011122636.5
申请日:2020-10-20
Applicant: 北京航空航天大学
Abstract: 本公开的实施例提供了一种加速退化试验方案优化设计方法、系统、设备和计算机可读存储介质。所述方法包括建立产品的性能加速退化模型;将可靠寿命估计的均方误差作为优化目标函数;基于试验目的、要求及所述优化目标函数确定试验变量;基于试验费用、约束条件及优化变量特性确定所述试验变量的范围,根据确定的试验变量和所述试验变量的范围,获取最优试验方案的解空间;将所述目标函数作为遗传算法的适应度函数,基于遗传算法在所述解空间中全局搜索最优试验变量;将所述最优试验变量代入所述加速退化模型,得到最优试验方案,根据所述最优试验方案进行加速退化试验。以此方式,可以同时优化多个试验变量。
-
公开(公告)号:CN108775983B
公开(公告)日:2019-05-03
申请号:CN201810713482.3
申请日:2018-07-03
Applicant: 北京航空航天大学
IPC: G01L5/00
Abstract: 本发明公开一种骨表面残余应力分布测试方法:步骤1建立了骨不同深度应力与应变的关系;步骤2建立了骨的应力与深度的关系;步骤3通过等式变换消除了实验最终要测的未知量,引入了柔度系数这一量,建立了应变与柔度系数和待求系数的关系并通过有限元模型计算出了柔度系数;步骤4通过改进的实验测得了应变值;步骤5通过实验测得了骨这一各向异性材料横向和纵向的弹性模量;步骤6通过求出的柔度系数和实验测得的应变解出了待求系数,从而最终求出了骨表面残余应力与深度的关系。本发明的有益效果是:通过独创的实验手段和建模结合的方式,提出了一种新的测量骨表面残余应力分布的测试方法,能够较为准确地测量骨表面附近残余应力分布。
-
公开(公告)号:CN105844095B
公开(公告)日:2018-08-17
申请号:CN201610165279.8
申请日:2016-03-22
Applicant: 北京航空航天大学
IPC: G06F17/50
Abstract: 一种基于性能退化的离子推力器小子样可靠性评估方法,包括以下步骤:一:对离子推力器的结构特点和关键失效模式进行分析,选取影响其寿命的关键性能参数;二:根据关键性能参数y随时间的退化规律,建立离子推力器小子样性能退化模型;三:确定离子推力器平均失效时间tMTTF和可靠度函数R(t);四:对第i台离子推力器,记录在时间tij时的测试性能退化值yij,i=1,2,...,m,j=1,2,...,ni,m为投入试验的离子推力器台数,ni为第i台离子推力器性能测试的总次数;五:估计性能退化模型中的未知参数;六:利用可靠度函数对离子推力器进行小子样可靠性评估。本发明开发利用不同时刻性能测试数据间的纵向信息,使信息量大幅增加。提高分析精度,同时在精度相同的情况下,则可节省大量试样。
-
公开(公告)号:CN107949052A
公开(公告)日:2018-04-20
申请号:CN201710930944.2
申请日:2017-10-09
Applicant: 北京航空航天大学
IPC: H04W64/00 , H04B17/318 , H04L29/12 , G01S5/02
Abstract: 本发明提供一种基于空间特征分区和前点约束的WKNN室内定位方法,步骤如下:一:划分分区;二:提取分区标识序列;三:分区判别;四:计算信号空间距离;五:加权得到位置估计;通过步骤一到步骤五,本发明提出的基于空间特征分区和前点约束的WKNN室内定位方法被执行,其通过将面积较大的目标区域按照其空间特征划分为多个分区,同时引入识别序列和欧氏距离的组合分区判据,解决了指纹数据库无法实现全域覆盖的问题;又通过考虑行人在相邻时刻所处位置之间的空间约束关系,缩小了最终参考点的筛选范围,很好地提升了位置估计的精度。
-
公开(公告)号:CN103411627B
公开(公告)日:2016-12-07
申请号:CN201310341821.7
申请日:2013-08-07
Applicant: 北京航空航天大学
IPC: G01C25/00
Abstract: 一种火星动力下降段非线性三步滤波方法,其步骤如下:一、建立离散型非线性三步方法的动力学系统和量测系统方程;二、给定初始值;三、状态量滤波;四、动力学系统偏差滤波;五、测量系统中的未知测量系统误差滤波;六、更新相关系数、校正状态估计和动力学偏差估计;七、返回步骤三往下进行,直到等于火星动力下降段时间截止对应的时刻T时,即火星着陆器着陆为止,至此完成火星动力下降段非线性三步滤波方法。本发明统筹考虑了火星实际动力下降过程中,非线性、非高斯随机系统在动力学系统偏差和测量系统中的未知测量系统误差条件下的探测器位置速度估计问题,有效保证探测器在火星动力下降段的位置速度估计。
-
公开(公告)号:CN105844095A
公开(公告)日:2016-08-10
申请号:CN201610165279.8
申请日:2016-03-22
Applicant: 北京航空航天大学
IPC: G06F19/00
CPC classification number: G06F19/00
Abstract: 一种基于性能退化的离子推力器小子样可靠性评估方法,包括以下步骤:一:对离子推力器的结构特点和关键失效模式进行分析,选取影响其寿命的关键性能参数;二:根据关键性能参数y随时间的退化规律,建立离子推力器小子样性能退化模型;三:确定离子推力器平均失效时间tMTTF和可靠度函数R(t);四:对第i台离子推力器,记录在时间tij时的测试性能退化值yij,i=1,2,...,m,j=1,2,...,ni,m为投入试验的离子推力器台数,ni为第i台离子推力器性能测试的总次数;五:估计性能退化模型中的未知参数;六:利用可靠度函数对离子推力器进行小子样可靠性评估。本发明开发利用不同时刻性能测试数据间的纵向信息,使信息量大幅增加。提高分析精度,同时在精度相同的情况下,则可节省大量试样。
-
-
-
-
-
-
-
-
-