一种基于无监督学习的系统参数辨识方法和装置

    公开(公告)号:CN116805161A

    公开(公告)日:2023-09-26

    申请号:CN202310666134.6

    申请日:2023-06-06

    IPC分类号: G06N3/088 G06N3/0985

    摘要: 本发明公开了一种基于无监督学习的系统参数辨识方法和装置,其中所述方法,包括:构建表征目标系统的状态空间方程,所述状态空间方程包括用于表征目标系统的输入与状态变量之间关系的状态方程,以及用于表征目标系统的状态变量与输出之间关系的观测方程,所述状态方程包括待辨识参数;整理状态空间方程为以参数分离形式表征已知参数和含有待辨识参数的第一状态空间方程;匹配于第一状态空间方程,构建神经网络模型,所述神经网络模型的输入输出与第一状态空间方程的输入输出相对应;训练神经网络模型,以获得待辨识参数。本发明方案通过构建目标系统状态空间方程与对应的神经网络模型,在模型的无监督训练不断收敛的过程中实现参数辨识。