一种基于多维向量熵随机采样的异常识别方法

    公开(公告)号:CN104504233B

    公开(公告)日:2017-06-06

    申请号:CN201410646085.0

    申请日:2014-11-14

    Abstract: 本发明提供了一种基于多维向量熵随机采样的异常识别方法,该方法包括以下步骤:I、从样本空间Ω中样本点选取采样点,生成子样本空间ω;II、确定所述样本点的多维向量熵;III、重复上述步骤,确定所述样本点多维向量熵的融合结果;IV、确定所述样本点的异常程度;V、确定异常点。该方法通过融合随机采样的样本点,解决大规模数据中的异常识别面临的样本量大、维度高等问题,该方法不仅能降低异常识别的时间复杂度,提高识别效果的准确性,还具有较强的扩展性。

    一种基于多维向量熵随机采样的异常识别方法

    公开(公告)号:CN104504233A

    公开(公告)日:2015-04-08

    申请号:CN201410646085.0

    申请日:2014-11-14

    Abstract: 本发明提供了一种基于多维向量熵随机采样的异常识别方法,该方法包括以下步骤:I、从样本空间Ω中样本点选取采样点,生成子样本空间ω;II、确定所述样本点的多维向量熵;III、重复上述步骤,确定所述样本点多维向量熵的融合结果;IV、确定所述样本点的异常程度;V、确定异常点。该方法通过融合随机采样的样本点,解决大规模数据中的异常识别面临的样本量大、维度高等问题,该方法不仅能降低异常识别的时间复杂度,提高识别效果的准确性,还具有较强的扩展性。

    基于视频中运动先验信息的行人检测方法及装置

    公开(公告)号:CN105046206B

    公开(公告)日:2019-02-01

    申请号:CN201510355350.4

    申请日:2015-06-24

    Abstract: 本发明实施例公开了一种基于视频中运动先验信息的行人检测方法及装置,涉及视频中的行人检测技术领域,解决了现有技术中视频中的行人检测方法复杂度较高、很难实现实时检测的问题。所述方法包括:通过背景差分的方法提取待检测视频中的运动信息;对所述运动信息中的运动目标进行区域聚类,得到运动密集区域块;对所述待检测视频中的视频帧图像依据所述运动密集区域块进行分割处理,分别建立图像金字塔;对所述运动密集区域块的每层图像金字塔进行特征提取,仅提取运动区域及附近像素的特征信息;运用滑窗的方式,检测所述运动密集区域块的每层金字塔图像中的行人,定位行人目标,获取行人检测结果。本发明的实施例主要用于视频中的行人检测。

    基于视频中运动先验信息的行人检测方法及装置

    公开(公告)号:CN105046206A

    公开(公告)日:2015-11-11

    申请号:CN201510355350.4

    申请日:2015-06-24

    Abstract: 本发明实施例公开了一种基于视频中运动先验信息的行人检测方法及装置,涉及视频中的行人检测技术领域,解决了现有技术中视频中的行人检测方法复杂度较高、很难实现实时检测的问题。所述方法包括:通过背景差分的方法提取待检测视频中的运动信息;对所述运动信息中的运动目标进行区域聚类,得到运动密集区域块;对所述待检测视频中的视频帧图像依据所述运动密集区域块进行分割处理,分别建立图像金字塔;对所述运动密集区域块的每层图像金字塔进行特征提取,仅提取运动区域及附近像素的特征信息;运用滑窗的方式,检测所述运动密集区域块的每层金字塔图像中的行人,定位行人目标,获取行人检测结果。本发明的实施例主要用于视频中的行人检测。

Patent Agency Ranking