-
公开(公告)号:CN119861087A
公开(公告)日:2025-04-22
申请号:CN202510249891.2
申请日:2025-03-04
Applicant: 北京科技大学 , 北方工业大学 , 首钢股份公司迁安钢铁公司
Abstract: 本发明公开了一种连铸坯半宏观偏析斑点三维表征方法及系统,所述方法包括:步骤S1、对连铸坯试样进行多层刨磨和酸洗腐蚀得到连铸坯半宏观偏析斑点;步骤S2、使用光学显微镜获取所述连铸坯半宏观偏析斑点的彩色照片,对所述照片进行预处理,得到半宏观偏析斑点的二维形貌并进行存储;步骤S3、将存储的半宏观偏析斑点的二维形貌数据重构,得到连铸坯半宏观偏析斑点的三维表征。本发明通过连铸坯试样刨磨和酸洗腐蚀,采用光镜检测获得半宏观偏析斑点二维分布特征。将试样进行多层刨磨和酸洗腐蚀,获得试样不同深度位置处半宏观偏析斑点演变特征。通过半宏观偏析斑点灰度值化处理和数据重构,表征半宏观偏析斑点的三维分布特征。
-
公开(公告)号:CN119647142A
公开(公告)日:2025-03-18
申请号:CN202411844651.9
申请日:2024-12-13
Applicant: 中国原子能科学研究院 , 北京科技大学 , 中国科学院计算机网络信息中心
IPC: G06F30/20 , G16C60/00 , G06F119/14 , G06F119/08 , G06F111/10
Abstract: 本申请的实施例涉及反应堆数值模拟技术领域,具体涉及一种数值反应堆、利用其验证反应堆设计的方法以及预测反应堆运行的方法,其包括:物理热工结构模块,其设置成模拟反应堆堆芯之间中子场、温度场及应力场;燃料材料模块,其设置成模拟反应堆的燃料在裂变过程中的组织结构变化及材料的组织结构变化;耦合模块,其设置成根据物理热工结构模块的中子场、温度场及应力场对燃料材料模块的中子场、温度场及应力场耦合及设置成燃料材料模块的材料和燃料的组织结构变化对物理热工结构模块的中子场、温度场以及应力场耦合。本申请实施例的数值反应堆有利于保证确定的燃料和材料的组织结构变化以及堆芯之间中子场、温度场以及应力场的准确性和可靠性。
-
公开(公告)号:CN118782174A
公开(公告)日:2024-10-15
申请号:CN202410765445.2
申请日:2024-06-14
Applicant: 北京科技大学 , 北方工业大学 , 唐山钢铁集团有限责任公司 , 江阴兴澄特种钢铁有限公司
Abstract: 本发明公开了一种钢液表面夹杂物碰撞吸引力预测方法及系统,方法包括:计算夹杂物在钢液表面的范德华力以及夹杂物间吸引力;基于范德华力和夹杂物间吸引力,构建初步模型;通过实验观察夹杂物的碰撞过程,得到模型优化参数;基于模型优化参数,对初步模型进行优化,得到预测模型;利用预测模型,完成钢液表面夹杂物碰撞吸引力的预测。本发明提供了预测钢液表面夹杂物之间吸引力的计算方法,为预测夹杂物碰撞趋势提供了理论指导,可用于计算Al2O3、MgO、SiO2等夹杂物之间吸引力;通过本发明计算夹杂物在钢液表面夹杂物之间吸引力,可较为精确的预测不同种类夹杂物在钢液表面的团聚碰撞趋势,对工业生产中提升钢液洁净度有一定的意义。
-
公开(公告)号:CN117236205A
公开(公告)日:2023-12-15
申请号:CN202310955766.4
申请日:2023-07-31
IPC: G06F30/28 , G06F30/10 , G06F17/11 , G06Q10/04 , G06Q50/04 , G06F119/14 , G06F113/08
Abstract: 本发明属于高品质钢冶炼技术领域,涉及一种预测钢液精炼过程中夹杂物上浮时间的方法及系统。该方法具体包括步骤为:预测钢液精炼过程中的宏观多相流场;将夹杂物均匀随机地注入到精炼过程的多相流场;确定夹杂物的捕获条件;计算多相流场中夹杂物的运动轨迹;通过对比夹杂物运动轨迹和捕获条件,输出捕获的夹杂物信息;通过分析捕获夹杂物信息,得到平均上浮时间、去除率与上浮时间的关系以及完全上浮时间。该方法不仅考虑了夹杂物的自身物性和尺寸,而且还与精炼工艺以及精炼过程的流场密切相关,其计算结果可以为定量化评价和优化精炼工艺及其参数提供理论依据;也可以为现场生产提供科学指导,确定精炼时间,优化生产实践。
-
公开(公告)号:CN113151637B
公开(公告)日:2022-10-14
申请号:CN202110352271.3
申请日:2021-03-31
Applicant: 北京科技大学 , 燕山大学 , 广西北部湾新材料有限公司
Abstract: 本发明属于钢铁冶金领域,涉及一种含铬钢表面抛光夹杂物凹坑缺陷的控制方法,在含铬钢精炼过程中,降低通过硅锰对钢液进行脱氧,控制合金和辅料中的铝和钙含量,使用铝含量和钙含量都低于0.05%的低铝低钙铁合金和辅料,将钢中铝含量控制在0.001%以下,钢中钙含量控制在0.0003%以下;使用碱度为1.5‑1.7的精炼渣;将钢中的硅含量控制到0.4%以下,再先弱冷后强冷,增强铬、硅和锰元素在钢基体与夹杂物周围的扩散传质,通过热处理后,促进产品表面锯齿形尖晶石夹杂物的生成,从而避免夹杂物引起的表面抛光凹坑缺陷。使得不锈钢表面等级达到BA等级,表面光泽度极好,有很高的反射率,如同镜面的表面。
-
公开(公告)号:CN113188862A
公开(公告)日:2021-07-30
申请号:CN202110344528.0
申请日:2021-03-29
Applicant: 北京科技大学 , 燕山大学 , 建龙北满特殊钢有限责任公司
Abstract: 一种钢液中溶解元素含量的测量方法,涉及钢铁冶金化学检测领域,包括以下步骤:S1:将待测液态钢水样品冷却,制得固态钢样;S2:将所述固态钢样置入电解液中进行电化学腐蚀,测得电化学腐蚀前后固态钢样的质量变化△msteel;S3:去除电化学腐蚀后电解液中的非金属夹杂物,获得待测元素溶液;S4:测定所述待测元素溶液中溶解元素i的质量mi;S5:获得所述待测液态钢水中溶解元素i的质量分数该方法利用电化学腐蚀和滤等方法,将钢中非金属夹杂物中的元素和钢中的溶解元素进行有效分离,再通过对电化学腐蚀溶液中的溶解元素含量通过ICP进行化学分析,此种测量方法精度准确,可实现对钢中溶解元素含量的有效测量。
-
公开(公告)号:CN113172207A
公开(公告)日:2021-07-27
申请号:CN202110382983.X
申请日:2021-04-09
Abstract: 本发明公开了一种基于电流变化的结晶器内钢液表面流场测量装置,属于钢铁冶金炼钢技术领域。本发明的一种基于电流变化的结晶器内钢液表面流场测量装置,包括插钉、电流表、电源和插钉固定板,插钉垂直固定于插钉固定板,通过导线分别将插钉、电流表、电源和结晶器铜板串联连接,电压表与插钉并联连接;使得钢液、结晶器铜板、电阻和电流表闭环回路,通过测量回路电流变化从而测算出插入钢液插钉的深度,进而实现对结晶器内钢水液面波动及流场的测量;此外,为保证测量的准确性,插钉中还安装了加热部件,使用时提前将冷的插钉加热至钢液温度,减小因温度场变化引起流场的改变,提高了测量的准确性。
-
公开(公告)号:CN113106199A
公开(公告)日:2021-07-13
申请号:CN202110333553.9
申请日:2021-03-29
Abstract: 一种降低硅锰脱氧钢氧化铝夹杂物的方法及装置,涉及钢铁冶金炼钢领域,包括以下步骤:S1:在转炉吹氧脱碳过程中,通过吹氧降低转炉终点钢水中碳的质量百分含量,控制钢水温度,提高转炉出钢下渣量;S2:在精炼过程中,转炉出钢过程中向钢水中加入脱氧剂;转炉出钢后通过使用低铝合金合金化,并向钢包中加入石英砂,对钢包进行软吹搅拌和静置操作;S3:在连铸过程中,对钢包进行留钢操作,向中间包吹氩并保护浇铸。该方法通过转炉终点低碳出钢提升钢水和精炼渣氧化性,出钢过程中脱氧合金加入控制、精炼渣成分控制、钢包吹氩控制、连铸保护浇铸,降低夹杂物中的氧化铝含量和夹杂物总量,提升夹杂物的变形能力,降低夹杂物的断丝率。
-
公开(公告)号:CN113106194A
公开(公告)日:2021-07-13
申请号:CN202110349919.1
申请日:2021-03-31
Applicant: 北京科技大学 , 燕山大学 , 邯郸钢铁集团有限责任公司
Abstract: 本发明属于钢铁冶金炼钢领域,具体涉及一种降低铝脱氧钢中B类夹杂物尺寸的方法,该方法通过在精炼时,先对钢液进行铝脱氧后对夹杂物进行软吹搅拌,促进大尺寸氧化铝夹杂物上浮去除,降低夹杂物的尺寸,再通过钙处理或含钙硅铁的加入结合控制冷却和控制加热方法,促进连铸和热处理过程中夹杂物转变为硬度更高的CaS外层和Al2O3‑MgO核心的复合夹杂物,降低夹杂物在轧制过程中变形能力,有效降低铝脱氧钢中B类夹杂物尺寸,铝脱氧钢B类夹杂物评级低于1.5级。有益效果是:本发明的方法可有效避免铝脱氧钢中B类夹杂物长度,降低B类夹杂物评级水平,可以有效提升铝脱氧钢的强度、韧性等性能,避免产品服役过程失效。
-
公开(公告)号:CN112794332A
公开(公告)日:2021-05-14
申请号:CN202110038313.6
申请日:2021-01-12
IPC: C01B33/037 , C01B21/068
Abstract: 一种氮化‑净化去除冶金硅中硼杂质的方法,属于冶金材料领域。本发明向冶金级硅熔体中加入氮化剂,氮化剂的加入可将硅熔体中的硼杂质转化为氮化物颗粒,而后对氮化后的硅熔体施加电磁力将氮化物颗粒向硅熔体周围聚集,再将硅熔体和氮化物颗粒进行强制冷却并分离,并利用上述分离出的富含氮化物颗粒的多晶硅生产氮化硅;由于氮化物颗粒与硅熔体之间存在明显的导电率差异,因此在电磁力的作用下,氮化物颗粒会富集至熔体周围,从而实现硼杂质和硅熔体的有效分离;此外,将富含氮化物颗粒的多晶硅粉碎,加入氯化铵并在流动性N2气氛下氮化处理得到氮化硅产物;利用富含氮化物的多晶硅,实现资源的高效利用,提高技术经济性。
-
-
-
-
-
-
-
-
-